Sufficient conditions are obtained for wellposedness of convex minimum problems of the calculus of variations for multiple integrals under strong or weak perturbations of the boundary data. Problems with a unique minimizer as well as problems with several solutions are treated. Wellposedness under weak convergence of the boundary data in W-1,W-p(Omega) is proved if p > 2, and a counterexample is exhibited if p = 2.

Wellposed convex integral functionals

PERCIVALE, DANILO;
1997

Abstract

Sufficient conditions are obtained for wellposedness of convex minimum problems of the calculus of variations for multiple integrals under strong or weak perturbations of the boundary data. Problems with a unique minimizer as well as problems with several solutions are treated. Wellposedness under weak convergence of the boundary data in W-1,W-p(Omega) is proved if p > 2, and a counterexample is exhibited if p = 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/424141
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact