Sufficient conditions are obtained for wellposedness of convex minimum problems of the calculus of variations for multiple integrals under strong or weak perturbations of the boundary data. Problems with a unique minimizer as well as problems with several solutions are treated. Wellposedness under weak convergence of the boundary data in W-1,W-p(Omega) is proved if p > 2, and a counterexample is exhibited if p = 2.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Wellposed convex integral functionals | |
Autori: | ||
Data di pubblicazione: | 1997 | |
Rivista: | ||
Abstract: | Sufficient conditions are obtained for wellposedness of convex minimum problems of the calculus of variations for multiple integrals under strong or weak perturbations of the boundary data. Problems with a unique minimizer as well as problems with several solutions are treated. Wellposedness under weak convergence of the boundary data in W-1,W-p(Omega) is proved if p > 2, and a counterexample is exhibited if p = 2. | |
Handle: | http://hdl.handle.net/11567/424141 | |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.