The following result is proved. THEOREM. Let G be a compact connected semisimple Lie group. For any p > 0 there exist two positive numbers A_p and B_p such that (up to equivalence) for any continuous irreducible unitary representation π of G there exists a matrix coefficient a_π of π such that A_p < d_π ∫|a_π|^p < B_p where d_π is the degree of π. As an application we show the nonexistence of infinite local Λ_q-sets.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Lp-estimates for matrix coefficients of irreducible representations of compact Lie groups |
Autori: | |
Data di pubblicazione: | 1980 |
Rivista: | |
Abstract: | The following result is proved. THEOREM. Let G be a compact connected semisimple Lie group. For any p > 0 there exist two positive numbers A_p and B_p such that (up to equivalence) for any continuous irreducible unitary representation π of G there exists a matrix coefficient a_π of π such that A_p < d_π ∫|a_π|^p < B_p where d_π is the degree of π. As an application we show the nonexistence of infinite local Λ_q-sets. |
Handle: | http://hdl.handle.net/11567/390741 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.