Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g1(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q2=0.15–1.64 GeV2. The contributions to the first moment Γ1(Q2)=∫g1(x,Q2) dx were determined up to Q2=1.2 GeV2. Using a parametrization for g1 in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Γ1 is observed for Q2<1 GeV2, with a sign change near Q2=0.3 GeV2, indicating dominant contributions from the resonance region. At Q2=1.2 GeV2 our data are below the perturbative QCD evolved scaling value.
Measurement of the Proton Spin Structure Function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS
CORVISIERO, PIETRO;RICCO, GIOVANNI;TAIUTI, MAURO GINO;
2003-01-01
Abstract
Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g1(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q2=0.15–1.64 GeV2. The contributions to the first moment Γ1(Q2)=∫g1(x,Q2) dx were determined up to Q2=1.2 GeV2. Using a parametrization for g1 in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Γ1 is observed for Q2<1 GeV2, with a sign change near Q2=0.3 GeV2, indicating dominant contributions from the resonance region. At Q2=1.2 GeV2 our data are below the perturbative QCD evolved scaling value.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.