The methodological aspects are here presented for the NAPPA (Nucleic Acid Programmable Protein Arrays) characterization by atomic force microscopy and anodic porous alumina. Anodic Porous Alumina represents also an advanced on chip laboratory for gene expression contained in an engineered plasmid vector. The results obtained with CdK2, CDKN1A, p53 and Jun test genes expressed on NAPPA and the future developments are discussed in terms of our pertinent and recent Patents and of their possibility to overcome some limitations of present fluorescence detection in probing protein-protein interaction in both basic sciences and clinical studies.

Atomic Force Microscopy And Anodic Porous Allumina Of Nucleic Acid Programmable Protein Arrays

NICOLINI, CLAUDIO;BEZERRA CORREIA TERENCIO, TERCIO;SPERA, ROSANNA;PESHKOVA, EVGENIYA
2013-01-01

Abstract

The methodological aspects are here presented for the NAPPA (Nucleic Acid Programmable Protein Arrays) characterization by atomic force microscopy and anodic porous alumina. Anodic Porous Alumina represents also an advanced on chip laboratory for gene expression contained in an engineered plasmid vector. The results obtained with CdK2, CDKN1A, p53 and Jun test genes expressed on NAPPA and the future developments are discussed in terms of our pertinent and recent Patents and of their possibility to overcome some limitations of present fluorescence detection in probing protein-protein interaction in both basic sciences and clinical studies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/386325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact