A configuration of linear spaces in a projective space is a finite collection of linear subspaces. In this paper we study the degree 2 part of the ideal of such objects. More precisely, for a generic configuration of linear spaces Λ we determine HF(Λ, 2), i.e. the Hilbert function of Λ in degree 2.
Subspace arrangements, configurations of linear spaces and the quadrics containing them
CATALISANO, MARIA VIRGINIA;GERAMITA, ANTHONY VITO
2012-01-01
Abstract
A configuration of linear spaces in a projective space is a finite collection of linear subspaces. In this paper we study the degree 2 part of the ideal of such objects. More precisely, for a generic configuration of linear spaces Λ we determine HF(Λ, 2), i.e. the Hilbert function of Λ in degree 2.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.