Exposure of fertilized eggs of the sea urchin Paracentrotus lividus to an electromagnetic field of 75-Hz frequency and low amplitudes (from 0.75 to 2.20 mT of magnetic component) leads to a dramatic loss of synchronization of the first cell cycle, with formation of anomalous embryos linked to irregular separation of chromatids during the mitotic events. Because acetylcholinesterase (ACHE) is thought to regulate the embryonic first developmental events of the sea urchin, its enzymatic activity was assayed in embryo homogenates and decreased by 48% when the homogenates were exposed to the same pulsed field. This enzymatic inactivation had a threshold of about 0.75 6 0.01 mT. The same field threshold was found for the effect on the formation of anomalous embryos of P. lividus. Moreover, ACHE inhibitors seem to induce the same teratological effects as those caused by the field, while blockers of acetylcholine (ACh) receptors are able to antagonize those effects. We conclude that one of the main causes of these dramatic effects on the early development of the sea urchin by field exposure could be the accumulation of ACh due to ACHE inactivation. The crucial role of the membrane in determining the conditions for enzyme inactivation is discussed.

First cell cycles of sea urchin Paracentrotus lividus are dramatically impaired by exposure toextremely low frequency electromagnetic field.

RAVERA, SILVIA;CALZIA, DANIELA;PANFOLI, ISABELLA;FALUGI, CARLA;MORELLI, ALESSANDRO;PEPE, ISIDORO
2006-01-01

Abstract

Exposure of fertilized eggs of the sea urchin Paracentrotus lividus to an electromagnetic field of 75-Hz frequency and low amplitudes (from 0.75 to 2.20 mT of magnetic component) leads to a dramatic loss of synchronization of the first cell cycle, with formation of anomalous embryos linked to irregular separation of chromatids during the mitotic events. Because acetylcholinesterase (ACHE) is thought to regulate the embryonic first developmental events of the sea urchin, its enzymatic activity was assayed in embryo homogenates and decreased by 48% when the homogenates were exposed to the same pulsed field. This enzymatic inactivation had a threshold of about 0.75 6 0.01 mT. The same field threshold was found for the effect on the formation of anomalous embryos of P. lividus. Moreover, ACHE inhibitors seem to induce the same teratological effects as those caused by the field, while blockers of acetylcholine (ACh) receptors are able to antagonize those effects. We conclude that one of the main causes of these dramatic effects on the early development of the sea urchin by field exposure could be the accumulation of ACh due to ACHE inactivation. The crucial role of the membrane in determining the conditions for enzyme inactivation is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/316846
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact