We model here a distributed implementation of cross-stopping, a combination of cross-validation and early-stopping techniques, for the selection of the optimal architecture of feed-forward networks. Due to the very large computational demand of the method, we use the RAIN system (Redundant Array of Inexpensive workstations for Neurocomputing) as a target platform for the experiments and show that this kind of system can be effectively used for computational intensive neurocomputing tasks.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A case study of a distributed high-performance computing system for neurocomputing | |
Autori: | ||
Data di pubblicazione: | 2000 | |
Rivista: | ||
Abstract: | We model here a distributed implementation of cross-stopping, a combination of cross-validation and early-stopping techniques, for the selection of the optimal architecture of feed-forward networks. Due to the very large computational demand of the method, we use the RAIN system (Redundant Array of Inexpensive workstations for Neurocomputing) as a target platform for the experiments and show that this kind of system can be effectively used for computational intensive neurocomputing tasks. | |
Handle: | http://hdl.handle.net/11567/315064 | |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.