Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header.

The effect of the flow direction inside the header on two-phase flow distribution in parallel vertical channels

MARCHITTO, ANNALISA;FOSSA, MARCO;GUGLIELMINI, GIOVANNI
2012-01-01

Abstract

Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/295609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
social impact