Abstract: It is shown that the notion of W_\infty-algebra originally carried out over a (compact) Riemann surface can be extended to n complex dimensional (compact) manifolds within a symplectic geometrical setup. The relationships with the Kodaira-Spencer deformation theory of complex structures are discussed. Subsequently, some field theoretical aspects at the classical level are briefly underlined.

W(infinity) algebras in n complex dimensions and Kodaira-Spencer deformations: A Symplectic approach

BANDELLONI, GIUSEPPE;
2002

Abstract

Abstract: It is shown that the notion of W_\infty-algebra originally carried out over a (compact) Riemann surface can be extended to n complex dimensional (compact) manifolds within a symplectic geometrical setup. The relationships with the Kodaira-Spencer deformation theory of complex structures are discussed. Subsequently, some field theoretical aspects at the classical level are briefly underlined.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/294207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact