Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing “engineered solid state nanopores”. The nanopores were fabricated on a suspended Si3N4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

Solid State nanopores for gene expression profiling

MUSSI, VALENTINA;P. Fanzio;REPETTO, LUCA;FIRPO, GIUSEPPE;VALBUSA, UGO;
2009-01-01

Abstract

Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing “engineered solid state nanopores”. The nanopores were fabricated on a suspended Si3N4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/286497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact