Tunnelling processes through black hole horizons have recently been inves- tigated in the framework of WKB theory, discovering an interesting interplay with Hawking radiation. In this paper, we instead adopt the point of view proper of QFT in curved spacetime, namely, we use a suitable scaling limit towards a Killing horizon to obtain the leading order of the correlation function relevant for the tunnelling. The computation is done for a certain large class of reference quantum states for scalar fields, including Hadamard states. In the limit of sharp localization either on the external side or on opposite sides of the horizon, the quantum correlation functions appear to have thermal nature. In both cases the characteristic temperature is referred to the surface gravity associated with the Killing field and thus connected with the Hawking one. Our approach is valid for every stationary charged rotating non-extremal black hole. How- ever, since the computation is completely local, it covers the case of a Killing horizon which just temporarily exists in some finite region, too. These results provide strong support to the idea that the Hawking radiation, which is detected at future null infinity and needs some global structures to be defined, is actually related to a local phenomenon taking place even for local geometric structures (local Killing horizons), existing just for a while.

State Independence for Tunnelling Processes Through Black Hole Horizons and Hawking Radiation

PINAMONTI, NICOLA
2012-01-01

Abstract

Tunnelling processes through black hole horizons have recently been inves- tigated in the framework of WKB theory, discovering an interesting interplay with Hawking radiation. In this paper, we instead adopt the point of view proper of QFT in curved spacetime, namely, we use a suitable scaling limit towards a Killing horizon to obtain the leading order of the correlation function relevant for the tunnelling. The computation is done for a certain large class of reference quantum states for scalar fields, including Hadamard states. In the limit of sharp localization either on the external side or on opposite sides of the horizon, the quantum correlation functions appear to have thermal nature. In both cases the characteristic temperature is referred to the surface gravity associated with the Killing field and thus connected with the Hawking one. Our approach is valid for every stationary charged rotating non-extremal black hole. How- ever, since the computation is completely local, it covers the case of a Killing horizon which just temporarily exists in some finite region, too. These results provide strong support to the idea that the Hawking radiation, which is detected at future null infinity and needs some global structures to be defined, is actually related to a local phenomenon taking place even for local geometric structures (local Killing horizons), existing just for a while.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/282843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact