Let X be a closed subscheme of the n-dimensional projective space Pn and let HF(X,-) and hp(X,-) denote, respectively, the Hilbert function and the Hilbert polynomial of X. We say that X has bipolynomial Hilbert function if HF(X,d) =min {hp(Pn, d), hp(X, d)} for every natural number d. We show that if X consists of a plane and generic lines, then X has bipolynomial Hilbert function. We also conjecture that generic configurations of non-intersecting linear spaces have bipolynomial Hilbert function.

Bipolynomial Hilbert functions

CATALISANO, MARIA VIRGINIA;GERAMITA, ANTHONY VITO
2010-01-01

Abstract

Let X be a closed subscheme of the n-dimensional projective space Pn and let HF(X,-) and hp(X,-) denote, respectively, the Hilbert function and the Hilbert polynomial of X. We say that X has bipolynomial Hilbert function if HF(X,d) =min {hp(Pn, d), hp(X, d)} for every natural number d. We show that if X consists of a plane and generic lines, then X has bipolynomial Hilbert function. We also conjecture that generic configurations of non-intersecting linear spaces have bipolynomial Hilbert function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/270212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact