Preliminary analyses already performed showed that innovative GCRs, both thermal and fast, are very promising candidate to reach the Gen-IV sustainability goal. The integrated LWR-HTR-GCFR basically aims at closing the current nuclear fuel cycle: in principle, thanks to the unique characteristics of Helium coolant reactors, LWR SNF along with DU become valuable material to produce energy. Additionally, burning HMs of LWR SNF means not only a drastic reduction in the Unat demand but also a remarkable decrease in the long-term radiotoxic component of nuclear waste to be geologically stored. This paper focuses on the analyses of the LWR-HTR-GCFR cycle performed by the University of Pisa in the frame of the EU PUMA project (6th FP). Starting from a brief outline of the main characteristics of HTR and GCFR concepts and of the advantages of linking LWR, HTR and GCFR in a symbiotic way, this paper shows the integrated cycle involving a typical LWR (1000MWe), a PBMR (400MWth) and a GCFR-“E” (2400MWth). Additionally, a brief overview of the main technological constraints concerning (Pu+MA)-based advanced fuels is given, in order to explain and justify the choices made in the framework of the considered cycle. Thereafter, calculations performed and results obtained are described.
Assessments of LWR-HTR-GCFR integrated fuel cycle
CERULLO, NICOLA;LOMONACO, GUGLIELMO
2009-01-01
Abstract
Preliminary analyses already performed showed that innovative GCRs, both thermal and fast, are very promising candidate to reach the Gen-IV sustainability goal. The integrated LWR-HTR-GCFR basically aims at closing the current nuclear fuel cycle: in principle, thanks to the unique characteristics of Helium coolant reactors, LWR SNF along with DU become valuable material to produce energy. Additionally, burning HMs of LWR SNF means not only a drastic reduction in the Unat demand but also a remarkable decrease in the long-term radiotoxic component of nuclear waste to be geologically stored. This paper focuses on the analyses of the LWR-HTR-GCFR cycle performed by the University of Pisa in the frame of the EU PUMA project (6th FP). Starting from a brief outline of the main characteristics of HTR and GCFR concepts and of the advantages of linking LWR, HTR and GCFR in a symbiotic way, this paper shows the integrated cycle involving a typical LWR (1000MWe), a PBMR (400MWth) and a GCFR-“E” (2400MWth). Additionally, a brief overview of the main technological constraints concerning (Pu+MA)-based advanced fuels is given, in order to explain and justify the choices made in the framework of the considered cycle. Thereafter, calculations performed and results obtained are described.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.