In this paper, the anodic oxidation of a real leachate from an old municipal solid waste landfill has been studied using an electrolytic flow cell equipped with a lead dioxide (PbO2) anode and stainless steel as the cathode. The influence of several operation parameters such as (i) the applied current (from 0.5 to 3 A), (ii) liquid flow rate (from 50 to 420 L h-1), (iii) temperature (from 25 to 50 °C), and (iv) pH (from 3.5 to 8.2) on the COD removal rate, current efficiency, and energy consumption has been evaluated. The galvanostatic electrolyses always yielded COD values below the discharge limit (COD p mg L-1); the COD removal rate increased with rising applied current, solution pH, and temperature, whereas it remained almost unaffected by the recirculation flow rate. These results indicate that the organic compounds were mainly removed by their indirect oxidation by the active chlorine generated from chlorides oxidation. The specific energy consumption necessary to reduce the organic load to below the disposal limit was 90 kWh m-3

Electrochemical process for the treatment of landfill leachate

PANIZZA, MARCO;DELUCCHI, MARINA;
2010-01-01

Abstract

In this paper, the anodic oxidation of a real leachate from an old municipal solid waste landfill has been studied using an electrolytic flow cell equipped with a lead dioxide (PbO2) anode and stainless steel as the cathode. The influence of several operation parameters such as (i) the applied current (from 0.5 to 3 A), (ii) liquid flow rate (from 50 to 420 L h-1), (iii) temperature (from 25 to 50 °C), and (iv) pH (from 3.5 to 8.2) on the COD removal rate, current efficiency, and energy consumption has been evaluated. The galvanostatic electrolyses always yielded COD values below the discharge limit (COD p mg L-1); the COD removal rate increased with rising applied current, solution pH, and temperature, whereas it remained almost unaffected by the recirculation flow rate. These results indicate that the organic compounds were mainly removed by their indirect oxidation by the active chlorine generated from chlorides oxidation. The specific energy consumption necessary to reduce the organic load to below the disposal limit was 90 kWh m-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/255418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 67
social impact