We have previously reported the modulation, during chondrogenesis and/or inflammation, of two chicken genes laying in the same genomic locus and coding for two polypeptides of the lipocalin protein family, the extracellular fatty acid binding protein (ExFABP) and the chondrogenesis associated lipocalin beta (CALbeta). A third gene, located within the same cluster and coding for a new lipocalin, CALgamma, has been identified and is here characterized. Tissue distribution analyzed by real-time quantitative reverse transcriptase-polymerase chain reaction in chicken embryos shows a ubiquitous expression with predominant levels of mRNA transcripts in the liver and the brain. In the developing tibia, a high expression of CALgamma mRNA was evidenced by in situ hybridization within the pre-hypertrophic and the hypertrophic zones of the bone-forming cartilage. In agreement, dedifferentiated chondrocytes in vitro express the transcripts to the highest level when they re-differentiate reaching hypertrophy. Such peculiar developmental pattern of expression that is analogous to those already described for Ex-FABP and CALbeta suggests that all three proteins may act synergistically in the process of endochondral bone formation.

A chondrogenesis-related lipocalin cluster includes a third new gene, CAL gamma

PAGANO, ALDO;CANCEDDA, RANIERI;
2003-01-01

Abstract

We have previously reported the modulation, during chondrogenesis and/or inflammation, of two chicken genes laying in the same genomic locus and coding for two polypeptides of the lipocalin protein family, the extracellular fatty acid binding protein (ExFABP) and the chondrogenesis associated lipocalin beta (CALbeta). A third gene, located within the same cluster and coding for a new lipocalin, CALgamma, has been identified and is here characterized. Tissue distribution analyzed by real-time quantitative reverse transcriptase-polymerase chain reaction in chicken embryos shows a ubiquitous expression with predominant levels of mRNA transcripts in the liver and the brain. In the developing tibia, a high expression of CALgamma mRNA was evidenced by in situ hybridization within the pre-hypertrophic and the hypertrophic zones of the bone-forming cartilage. In agreement, dedifferentiated chondrocytes in vitro express the transcripts to the highest level when they re-differentiate reaching hypertrophy. Such peculiar developmental pattern of expression that is analogous to those already described for Ex-FABP and CALbeta suggests that all three proteins may act synergistically in the process of endochondral bone formation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/248124
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact