In this paper, a supervised algorithm for vessel segmentation in red-free images of the human retina is proposed. The algorithm is modular and made up of two fundamental blocks. The optimal values of two algorithm parameters are found out by maximizing proper measures of performances (MOPs) able to evaluate from a quantitative point of view the results provided by the proposed algorithm. The choice of the MOP allows one to tailor the solution to the specific image features to be emphasized. The performances of the algorithm are compared with those of other methods described in the literature. The simulation results show a good trade-off between quality and processing speed times. For instance, in terms of the maximum average accuracy (MAA), K value, and specificity (SP), the best performance outcomes are 0.9587, 0.8069 and 0.9477, respectively.
A modular supervised algorithm for vessel segmentation in red-free retinal images
PARODI, MAURO;STORACE, MARCO
2008-01-01
Abstract
In this paper, a supervised algorithm for vessel segmentation in red-free images of the human retina is proposed. The algorithm is modular and made up of two fundamental blocks. The optimal values of two algorithm parameters are found out by maximizing proper measures of performances (MOPs) able to evaluate from a quantitative point of view the results provided by the proposed algorithm. The choice of the MOP allows one to tailor the solution to the specific image features to be emphasized. The performances of the algorithm are compared with those of other methods described in the literature. The simulation results show a good trade-off between quality and processing speed times. For instance, in terms of the maximum average accuracy (MAA), K value, and specificity (SP), the best performance outcomes are 0.9587, 0.8069 and 0.9477, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.