By using the definition of Γ-convergence for vector valued functions given in Oppezzi and Rossi ([12]), we obtain a property of infimum values of the Γ-limit. By generalizing Mosco convergence to vector valued functions, we also obtain, in the convex case, the extension of some stability results analogous to the ones in Oppezzi and Rossi ([12]), when domain and value space are infinite dimensional.

A convergence for infinite dimensional vector valued functions

ROSSI, ANNA
2008-01-01

Abstract

By using the definition of Γ-convergence for vector valued functions given in Oppezzi and Rossi ([12]), we obtain a property of infimum values of the Γ-limit. By generalizing Mosco convergence to vector valued functions, we also obtain, in the convex case, the extension of some stability results analogous to the ones in Oppezzi and Rossi ([12]), when domain and value space are infinite dimensional.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/225947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact