We consider an isolated, macroscopic quantum system. Let H be a micro-canonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + delta E. The thermal equilibrium macro-state at energy E corresponds to a subspace H_{eq} of H such that dim H_{eq}/dim H is close to 1. We say that a system with state vector psi in H is in thermal equilibrium if psi is "close" to H_{eq}. We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors psi_0 evolve in such a way that psi_t is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.

Approach to Thermal Equilibrium of Macroscopic Quantum Systems

ZANGHI', PIERANTONIO
2010-01-01

Abstract

We consider an isolated, macroscopic quantum system. Let H be a micro-canonical "energy shell," i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E + delta E. The thermal equilibrium macro-state at energy E corresponds to a subspace H_{eq} of H such that dim H_{eq}/dim H is close to 1. We say that a system with state vector psi in H is in thermal equilibrium if psi is "close" to H_{eq}. We show that for "typical" Hamiltonians with given eigenvalues, all initial state vectors psi_0 evolve in such a way that psi_t is in thermal equilibrium for most times t. This result is closely related to von Neumann's quantum ergodic theorem of 1929.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/223481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 103
social impact