N and O isotope systematics of a suite of high-pressure (HP) and ultrahigh-pressure (UHP) metasediments of the Schistes Lustrés nappe and metaperidotites of the Erro Tobbio Massif from the Alpine-Appennine system are compared with their unmetamorphosed or hydrothermally-altered equivalent from the same localities and from the South West Indian Ridge (SWIR). The HP and UHP rocks studied represent a sequence of pelagic sediments and altered ultramafic rocks subducted to different depths of down to 90-km along a cold geothermal gradient (8 °C/km). Unmetamorphosed and HP metasediments show the same range in δ15N values irrespective of their metamorphic grade and bulk nitrogen concentrations. Together with several other geochemical features (K, Rb and Cs contents, δD), this indicates that δ15N values were unaffected by metamorphism and N was not released during subduction. N isotope analysis of serpentinites coupled with δ18O systematics suggests the involvement of a mafic (crustal) component during partial deserpentinization of the subducted oceanic mantle at the depth locus of island arc magmatism. This does not imply large-scale fluxes as the metagabbros are spatially associated with the analyzed serpentinites. It rather indicates preservation of presubduction chemical and isotopic heterogeneities on a local scale as documented for the metasediments.
Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction
SCAMBELLURI, MARCO;
2007-01-01
Abstract
N and O isotope systematics of a suite of high-pressure (HP) and ultrahigh-pressure (UHP) metasediments of the Schistes Lustrés nappe and metaperidotites of the Erro Tobbio Massif from the Alpine-Appennine system are compared with their unmetamorphosed or hydrothermally-altered equivalent from the same localities and from the South West Indian Ridge (SWIR). The HP and UHP rocks studied represent a sequence of pelagic sediments and altered ultramafic rocks subducted to different depths of down to 90-km along a cold geothermal gradient (8 °C/km). Unmetamorphosed and HP metasediments show the same range in δ15N values irrespective of their metamorphic grade and bulk nitrogen concentrations. Together with several other geochemical features (K, Rb and Cs contents, δD), this indicates that δ15N values were unaffected by metamorphism and N was not released during subduction. N isotope analysis of serpentinites coupled with δ18O systematics suggests the involvement of a mafic (crustal) component during partial deserpentinization of the subducted oceanic mantle at the depth locus of island arc magmatism. This does not imply large-scale fluxes as the metagabbros are spatially associated with the analyzed serpentinites. It rather indicates preservation of presubduction chemical and isotopic heterogeneities on a local scale as documented for the metasediments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.