Indian frankincense is a gum resin from Boswellia serrata of Burseraceae used in Ayurveda and Western medicine for the antinflammatory effects of boswellic acids, particularly 3-O-acetyl-11-keto--boswellic acid (AKBA).We evaluated in vitro cytotoxicities of B. serrata extract and AKBA on differentiated and undifferentiated keratinocytes (HaCaT and NCTC 2544), and foetal dermal fibroblasts (HFFF2), using neutral red uptake (NRU), MTT, and DNA assays. Comparison between NRU and MTT, and between the extract and AKBA, suggested a relatively higher toxicity of both substances on lysosomes respect to mitochondria. Extract cytotoxicity on lysosomes was higher in NCTC and HFFF2 than on the more differentiated HaCaT. DNA assay showed low extract inhibition on HFFF2 proliferation, possibly due to lower growth rate, and a stronger effect on NCTC than on HaCaT, possibly related to higher proapoptotic effect on the less differentiated NCTC, as also suggested by higher AKBA toxicity on NCTC than on HaCaT. In general, gum resin and AKBA toxicities were slightly lower or higher than that of the reference compound SDS. Our in vitro model allowed to compare the sensitivities of different human skin cells to B. serrata, and indicated that the gum resin and AKBA exert moderate to low toxicity on the skin.

Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-β-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines.

BURLANDO, BRUNO PIETRO;BASSI, ANNA MARIA
2008-01-01

Abstract

Indian frankincense is a gum resin from Boswellia serrata of Burseraceae used in Ayurveda and Western medicine for the antinflammatory effects of boswellic acids, particularly 3-O-acetyl-11-keto--boswellic acid (AKBA).We evaluated in vitro cytotoxicities of B. serrata extract and AKBA on differentiated and undifferentiated keratinocytes (HaCaT and NCTC 2544), and foetal dermal fibroblasts (HFFF2), using neutral red uptake (NRU), MTT, and DNA assays. Comparison between NRU and MTT, and between the extract and AKBA, suggested a relatively higher toxicity of both substances on lysosomes respect to mitochondria. Extract cytotoxicity on lysosomes was higher in NCTC and HFFF2 than on the more differentiated HaCaT. DNA assay showed low extract inhibition on HFFF2 proliferation, possibly due to lower growth rate, and a stronger effect on NCTC than on HaCaT, possibly related to higher proapoptotic effect on the less differentiated NCTC, as also suggested by higher AKBA toxicity on NCTC than on HaCaT. In general, gum resin and AKBA toxicities were slightly lower or higher than that of the reference compound SDS. Our in vitro model allowed to compare the sensitivities of different human skin cells to B. serrata, and indicated that the gum resin and AKBA exert moderate to low toxicity on the skin.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/222332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 30
social impact