A distribution on a Heisenberg type group of homogeneous dimension Q is a biradial kernel of type a if it coincides with a biradial function, homogeneous of degree a −Q, and smooth away from the identity. We prove that a distribution is a biradial kernel of type a, 0 ≤a<Q, if and only if its Gelfand transform, defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneous of degree −a/2. A similar result holds for radial kernels on the Heisenberg group.

The Gelfand transform of homogeneous distributions of Heisenberg type groups

ASTENGO, FRANCESCA;
2006-01-01

Abstract

A distribution on a Heisenberg type group of homogeneous dimension Q is a biradial kernel of type a if it coincides with a biradial function, homogeneous of degree a −Q, and smooth away from the identity. We prove that a distribution is a biradial kernel of type a, 0 ≤a
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/221573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact