Unlike a purely reactive system where the motor output is exclusively controlled by the actual sensory input, a cognitive system must be capable of running mental processes which virtually simulate action sequences aimed at achieving a goal. The mental process either attempts to find a feasible course of action compatible with a number of constraints (Internal, Environmental, Task Specific etc) or selects it from a repertoire of previously learned actions, according to the parameters of the task. If neither reasoning process succeeds, a typical backup strategy is to look for a tool that might allow the operator to match all the task constraints. This further necessitates having the capability to alter ones own goal structures to generate sub-goals which must be successfully accomplished in order to achieve the primary goal. In this paper, we introduce a forward/inverse motor control architecture (FMC/ IMC) that relaxes an internal model of the overall kinematic chain to a virtual force field applied to the end effector, in the intended direction of movement. This is analogous to the mechanism of coordinating the motion of a wooden marionette by means of attached strings. The relaxation of the FMC/IMC pair provides a general solution for mentally simulating an action of reaching a target position taking into consideration a range of geometric constraints (range of motion in the joint space, internal and external constraints in the workspace) as well as effort-related constraints (range of torque of the actuators, etc.). In case, the forward simulation is successful, the movement is executed; otherwise the residual “error” or measure of inconsistency is taken as a starting point for breaking the action plan into a sequence of sub actions. This process is achieved using a recurrent neural network (RNN) which coordinates the overall reasoning process of framing and issuing goals to the forward inverse models, searching for alternatives tools in solution space and formation of sub-goals based on past context knowledge and present inputs. The RNN+FMC/IMC system is able to successfully reason and coordinate a diverse range of reaching and grasping sequences with/without tools. Using a simple robotic platform (5 DOF Scorbot arm+Stereo vision) we present results of reasoning and coordination of arm/tool movements (real and mental simulation) specifically directed towards solving the classical 2-stick paradigm from animal reasoning at a non linguistic level.

Towards reasoning and coordinating action in the mental space

MORASSO, PIETRO GIOVANNI
2007-01-01

Abstract

Unlike a purely reactive system where the motor output is exclusively controlled by the actual sensory input, a cognitive system must be capable of running mental processes which virtually simulate action sequences aimed at achieving a goal. The mental process either attempts to find a feasible course of action compatible with a number of constraints (Internal, Environmental, Task Specific etc) or selects it from a repertoire of previously learned actions, according to the parameters of the task. If neither reasoning process succeeds, a typical backup strategy is to look for a tool that might allow the operator to match all the task constraints. This further necessitates having the capability to alter ones own goal structures to generate sub-goals which must be successfully accomplished in order to achieve the primary goal. In this paper, we introduce a forward/inverse motor control architecture (FMC/ IMC) that relaxes an internal model of the overall kinematic chain to a virtual force field applied to the end effector, in the intended direction of movement. This is analogous to the mechanism of coordinating the motion of a wooden marionette by means of attached strings. The relaxation of the FMC/IMC pair provides a general solution for mentally simulating an action of reaching a target position taking into consideration a range of geometric constraints (range of motion in the joint space, internal and external constraints in the workspace) as well as effort-related constraints (range of torque of the actuators, etc.). In case, the forward simulation is successful, the movement is executed; otherwise the residual “error” or measure of inconsistency is taken as a starting point for breaking the action plan into a sequence of sub actions. This process is achieved using a recurrent neural network (RNN) which coordinates the overall reasoning process of framing and issuing goals to the forward inverse models, searching for alternatives tools in solution space and formation of sub-goals based on past context knowledge and present inputs. The RNN+FMC/IMC system is able to successfully reason and coordinate a diverse range of reaching and grasping sequences with/without tools. Using a simple robotic platform (5 DOF Scorbot arm+Stereo vision) we present results of reasoning and coordination of arm/tool movements (real and mental simulation) specifically directed towards solving the classical 2-stick paradigm from animal reasoning at a non linguistic level.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/218921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact