Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 μg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD + levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/ cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs

Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells.

BRUZZONE, SANTINA;DE FLORA, ANTONIO;USAI C;
2003-01-01

Abstract

Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 μg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD + levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/ cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs
File in questo prodotto:
File Dimensione Formato  
bruzzone biochem j 2003.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 150.63 kB
Formato Adobe PDF
150.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/213157
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 53
social impact