Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 μg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD + levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/ cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs
Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells.
BRUZZONE, SANTINA;DE FLORA, ANTONIO;USAI C;
2003-01-01
Abstract
Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 μg/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD + levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/ cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+]), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCsFile | Dimensione | Formato | |
---|---|---|---|
bruzzone biochem j 2003.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
150.63 kB
Formato
Adobe PDF
|
150.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.