We study the separability of the Neumann–Rosochatius system on the n-dimensional sphere using the geometry of bi-Hamiltonian manifolds. Its well-known separation variables are recovered by means of a separability condition relating the Hamiltonian with a suitable (1, 1) tensor field on the sphere. This also allows us to iteratively construct the integrals of motion of the system.

A geometric approach to the separability of the Neumann-Rosochatius system

BARTOCCI, CLAUDIO;
2004-01-01

Abstract

We study the separability of the Neumann–Rosochatius system on the n-dimensional sphere using the geometry of bi-Hamiltonian manifolds. Its well-known separation variables are recovered by means of a separability condition relating the Hamiltonian with a suitable (1, 1) tensor field on the sphere. This also allows us to iteratively construct the integrals of motion of the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/210020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact