In this paper we prove the existence of minimal level artinian graded algebras having socle degree r and type t and describe their h-vector in terms of the r-binomial expansion of t. We also investigate the graded Betti numbers of such algebras and completely describe their extremal resolutions. We also show that any set of points in PP^n whose Hilbert function has first difference as described above, must satisfy the Cayley-Bacharach property.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Level Algebras, Lex Segments and Minimal Hilbert Functions |
Autori: | |
Data di pubblicazione: | 2003 |
Rivista: | |
Abstract: | In this paper we prove the existence of minimal level artinian graded algebras having socle degree r and type t and describe their h-vector in terms of the r-binomial expansion of t. We also investigate the graded Betti numbers of such algebras and completely describe their extremal resolutions. We also show that any set of points in PP^n whose Hilbert function has first difference as described above, must satisfy the Cayley-Bacharach property. |
Handle: | http://hdl.handle.net/11567/208987 |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.