In spite of the epidemiological evidence supporting a synergism between alcohol consumption and cigarette smoking in the pathogenesis of cancers of the aerodigestive tract, there is a paucity of experimental studies evaluating the effects of these agents under well-controlled conditions and exploring the mechanisms involved. We exposed groups of female BD rats, aged 8 months, to ethanol (5% in drinking water for 8 consecutive months) and/or whole-body to mainstream cigarette smoke (1 h/day, 5 days/week for 8 months). DNA was purified from different organs and analyzed for the presence of DNA- protein crosslinks and 32P-postlabeled DNA adducts after butanol enrichment. No significant increase of DNA-protein crosslinks, compared to untreated controls, was induced by any treatment in liver, lung, or heart. 'Spontaneous' nucleotidic modifications were detected by 32p-postlabeling in organs of untreated rats, with the highest levels occurring in the heart. Ingestion of ethanol did not affect DNA adduct levels in any of the organs examined: esophagus, liver, lung, and heart. Exposure to cigarette smoke induced formation of DNA adducts in the lung and heart, but not in the esophagus or liver. The combined ingestion of ethanol resulted in a significant formation of smoke-related DNA adducts in the esophagus and in their further, dramatic increase in the heart. It thus appears that ethanol consumption increases the bioavailability of DNA binding smoke components in the upper digestive tract and favors their systemic distribution. The mechanisms responsible for the interaction between ethanol and smoke and for the selective localization of DNA alterations in different organs are discussed. Formation of DNA adducts in the organs examined may be relevant in the pathogenesis of lung and esophageal cancers as well as in the pathogenesis of other types of chronic degenerative diseases, such as chronic obstructive pulmonary diseases and cardiomyopathies. - Izzotti, A., Balansky, R. M., Blagoeva, P.M., Mircheva, Z.I., Tulimiero, L., Cartiglia, C., De Flora, S. DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion.

DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion

Izzotti A.;Cartiglia C.;De Flora S.
1998-01-01

Abstract

In spite of the epidemiological evidence supporting a synergism between alcohol consumption and cigarette smoking in the pathogenesis of cancers of the aerodigestive tract, there is a paucity of experimental studies evaluating the effects of these agents under well-controlled conditions and exploring the mechanisms involved. We exposed groups of female BD rats, aged 8 months, to ethanol (5% in drinking water for 8 consecutive months) and/or whole-body to mainstream cigarette smoke (1 h/day, 5 days/week for 8 months). DNA was purified from different organs and analyzed for the presence of DNA- protein crosslinks and 32P-postlabeled DNA adducts after butanol enrichment. No significant increase of DNA-protein crosslinks, compared to untreated controls, was induced by any treatment in liver, lung, or heart. 'Spontaneous' nucleotidic modifications were detected by 32p-postlabeling in organs of untreated rats, with the highest levels occurring in the heart. Ingestion of ethanol did not affect DNA adduct levels in any of the organs examined: esophagus, liver, lung, and heart. Exposure to cigarette smoke induced formation of DNA adducts in the lung and heart, but not in the esophagus or liver. The combined ingestion of ethanol resulted in a significant formation of smoke-related DNA adducts in the esophagus and in their further, dramatic increase in the heart. It thus appears that ethanol consumption increases the bioavailability of DNA binding smoke components in the upper digestive tract and favors their systemic distribution. The mechanisms responsible for the interaction between ethanol and smoke and for the selective localization of DNA alterations in different organs are discussed. Formation of DNA adducts in the organs examined may be relevant in the pathogenesis of lung and esophageal cancers as well as in the pathogenesis of other types of chronic degenerative diseases, such as chronic obstructive pulmonary diseases and cardiomyopathies. - Izzotti, A., Balansky, R. M., Blagoeva, P.M., Mircheva, Z.I., Tulimiero, L., Cartiglia, C., De Flora, S. DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1188275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact