Dexterous in-hand manipulation is a peculiar and useful human skill. This ability requires the coordination of many senses and hand motion to adhere to many constraints. These constraints vary and can be influenced by the object characteristics or the specific application. One of the key elements for a robotic platform to implement reliable inhand manipulation skills is to be able to integrate those constraints in their motion generations. These constraints can be implicitly modelled, learned through experience or human demonstrations. We propose a method based on motion primitives dictionaries to learn and reproduce in-hand manipulation skills. In particular, we focused on fingertip motions during the manipulation, and we defined an optimization process to combine motion primitives to reach specific fingertip configurations. The results of this work show that the proposed approach can generate manipulation motion coherent with the human one and that manipulation constraints are inherited even without an explicit formalization.

In-hand manipulation planning using human motion dictionary

Belcamino, Valerio;Carfi, Alessandro;Mastrogiovanni, Fulvio
2022-01-01

Abstract

Dexterous in-hand manipulation is a peculiar and useful human skill. This ability requires the coordination of many senses and hand motion to adhere to many constraints. These constraints vary and can be influenced by the object characteristics or the specific application. One of the key elements for a robotic platform to implement reliable inhand manipulation skills is to be able to integrate those constraints in their motion generations. These constraints can be implicitly modelled, learned through experience or human demonstrations. We propose a method based on motion primitives dictionaries to learn and reproduce in-hand manipulation skills. In particular, we focused on fingertip motions during the manipulation, and we defined an optimization process to combine motion primitives to reach specific fingertip configurations. The results of this work show that the proposed approach can generate manipulation motion coherent with the human one and that manipulation constraints are inherited even without an explicit formalization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1174017
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact