Vancomycin is a glycopeptide antibiotic that has been adopted in clinical practice to treat gram-positive infections for more than 70 years. Despite vancomycin's long history of therapeutic use, optimal dose adjustments and pharmacokinetic/pharmacodynamic (PK/PD) target attainment in children are still under debate. Therapeutic drug monitoring (TDM) has been widely integrated into pediatric clinical practice to maximize efficacy and safety of vancomycin treatment. Area under the curve (AUC)-guided TDM has been recently recommended instead of trough-only TDM to ensure PK/PD target attainment of AUC(0-24h)/minimal inhibitory concentration (MIC) > 400 to 600 and minimize acute kidney injury risk. Bayesian forecasting in pediatric patients allows estimation of population PK to accurately predict individual vancomycin concentrations over time, and consequently total vancomycin exposure. AUC-guided TDM for vancomycin, preferably with Bayesian forecasting, is therefore suggested for all pediatric age groups and special pediatric populations. In this review we aim to analyze the current literature on the pediatric use of vancomycin and summarize the current knowledge on dosing optimization for target attainment in special patient populations.

Dose optimization and target attainment of vancomycin in children

Alessia Cafaro;Manuela Stella;Alessio Mesini;Elio Castagnola;Francesca Mattioli;Giammarco Baiardi
2024-01-01

Abstract

Vancomycin is a glycopeptide antibiotic that has been adopted in clinical practice to treat gram-positive infections for more than 70 years. Despite vancomycin's long history of therapeutic use, optimal dose adjustments and pharmacokinetic/pharmacodynamic (PK/PD) target attainment in children are still under debate. Therapeutic drug monitoring (TDM) has been widely integrated into pediatric clinical practice to maximize efficacy and safety of vancomycin treatment. Area under the curve (AUC)-guided TDM has been recently recommended instead of trough-only TDM to ensure PK/PD target attainment of AUC(0-24h)/minimal inhibitory concentration (MIC) > 400 to 600 and minimize acute kidney injury risk. Bayesian forecasting in pediatric patients allows estimation of population PK to accurately predict individual vancomycin concentrations over time, and consequently total vancomycin exposure. AUC-guided TDM for vancomycin, preferably with Bayesian forecasting, is therefore suggested for all pediatric age groups and special pediatric populations. In this review we aim to analyze the current literature on the pediatric use of vancomycin and summarize the current knowledge on dosing optimization for target attainment in special patient populations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1171716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact