The proposed paper addresses how Support Vector Data Description (SVDD) can be used to detect safety regions with zero statistical error. It provides a detailed methodology for the applicability of SVDD in real-life applications, such as Vehicle Platooning, by addressing common machine learning problems such as parameter tuning and handling large data sets. Also, intelligible analytics for knowledge extraction with rules is presented: it is targeted to understand safety regions of system parameters. Results are shown by feeding data through simulation to the train of different rule extraction mechanisms.

Reliable AI Through SVDD and Rule Extraction

Carlevaro A.;Mongelli M.
2021-01-01

Abstract

The proposed paper addresses how Support Vector Data Description (SVDD) can be used to detect safety regions with zero statistical error. It provides a detailed methodology for the applicability of SVDD in real-life applications, such as Vehicle Platooning, by addressing common machine learning problems such as parameter tuning and handling large data sets. Also, intelligible analytics for knowledge extraction with rules is presented: it is targeted to understand safety regions of system parameters. Results are shown by feeding data through simulation to the train of different rule extraction mechanisms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1164120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact