Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.

Myopathologic trajectory in Duchenne muscular dystrophy (DMD) reveals lack of regeneration due to senescence in satellite cells

Panicucci, Chiara;Bruno, Claudio;Fiorillo, Chiara;
2023-01-01

Abstract

Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1161162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact