2-(1-Piperazinyl)-4H-pyrido[1,2-a]pyrimidin-4-one (5a) is a recently described in vitro inhibitor of human platelet aggregation which specifically inhibits the activity of high affinity cAMP phosphodiesterase. A number of substitution derivatives, isosteres, and analogues of 5a were now synthesized and tested in vitro for their inhibitory activity on human platelet aggregation induced in platelet-rich plasma by ADP, collagen, or the Ca2+ ionophore A23187. Among the most effective compounds, the 6-methyl, 8-methyl and 6,8-dimethyl derivatives of 5a resulted nearly as active as the lead when platelet aggregation was induced by ADP or A23187, but less active when collagen was the inducer. On the basis of present results and those previously obtained by us in this and 2-aminochromone structural fields, we have developed a statistically significant 3-D QSAR model, using comparative molecular field analysis (CoMFA), describing the variation of the antiplatelet activity in terms of molecular steric and electrostatic potential changes. (C) 2000 Elsevier Science Ltd.

Synthesis, antiplatelet activity and comparative molecular field analysis of substituted 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones, their congeners and isosteric analogues

Roma G.;Di Braccio M.;Grossi G.;Leoncini G.;Signorello M.;
2000-01-01

Abstract

2-(1-Piperazinyl)-4H-pyrido[1,2-a]pyrimidin-4-one (5a) is a recently described in vitro inhibitor of human platelet aggregation which specifically inhibits the activity of high affinity cAMP phosphodiesterase. A number of substitution derivatives, isosteres, and analogues of 5a were now synthesized and tested in vitro for their inhibitory activity on human platelet aggregation induced in platelet-rich plasma by ADP, collagen, or the Ca2+ ionophore A23187. Among the most effective compounds, the 6-methyl, 8-methyl and 6,8-dimethyl derivatives of 5a resulted nearly as active as the lead when platelet aggregation was induced by ADP or A23187, but less active when collagen was the inducer. On the basis of present results and those previously obtained by us in this and 2-aminochromone structural fields, we have developed a statistically significant 3-D QSAR model, using comparative molecular field analysis (CoMFA), describing the variation of the antiplatelet activity in terms of molecular steric and electrostatic potential changes. (C) 2000 Elsevier Science Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1160461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact