The carbon-free energy transition requires the spread of advanced technologies based on high-performing materials. In this framework and particularly referring to electrochemical energy converting systems, double perovskites are arousing more and more interest as mixed ionic electronic conductors with flexible manufacturing, appropriate tailoring for many tasks and high chemical stability. Among their possible applications, they form excellent oxygen electrodes in solid oxide cell technology used as fuel cells, steam/CO2 electrolysis cells and electrochemical air separation units. In view of the encouraging results shown by SmBa1-x Ca x Co2O5+delta co-doped double perovskite, this research work aims at a detailed analysis of SmBa0.8Ca0.2Co2O5+delta performance and the identification of kinetic paths for oxygen reduction and oxidation reactions. The electrochemical characterization was performed over a wide range of operation conditions to evaluate the electrode reversible behaviour and the interplay of the recognized phenomena governing the overall electrode kinetics.

A kinetic study on oxygen redox reaction of a double-perovskite reversible oxygen electrode-Part I: Experimental analysis

Bianchi, FR;Clematis, D;Bosio, B;Barbucci, A
2024-01-01

Abstract

The carbon-free energy transition requires the spread of advanced technologies based on high-performing materials. In this framework and particularly referring to electrochemical energy converting systems, double perovskites are arousing more and more interest as mixed ionic electronic conductors with flexible manufacturing, appropriate tailoring for many tasks and high chemical stability. Among their possible applications, they form excellent oxygen electrodes in solid oxide cell technology used as fuel cells, steam/CO2 electrolysis cells and electrochemical air separation units. In view of the encouraging results shown by SmBa1-x Ca x Co2O5+delta co-doped double perovskite, this research work aims at a detailed analysis of SmBa0.8Ca0.2Co2O5+delta performance and the identification of kinetic paths for oxygen reduction and oxidation reactions. The electrochemical characterization was performed over a wide range of operation conditions to evaluate the electrode reversible behaviour and the interplay of the recognized phenomena governing the overall electrode kinetics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1158215
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact