The photocatalytic reduction of CO2 into solar fuel is considered a promising approach to solving the energy crisis and mitigating the environmental pollution caused by anthropogenic CO2 emission. Some powder photocatalysts have been demonstrated as efficient, but their drifting properties, along with difficult separation (catalyst and product), make continuous mode reaction very challenging, particularly in the liquid phase. In order to make this process commercially viable and economically more efficient, we have developed a simple and scalable method for immobilizing TiO2 P25 over the surface of glass slides using an organic-based surfactant. Improved adhesion properties and the homogeneous dispersion of catalyst nanoparticles were achieved. A holder was designed with 3D printing technology in such a way that it can hold up to six slides that can be dipped simultaneously into the suspension or solution of desired materials for a uniform and homogeneous deposition. The resulting surfaces of the dip-coated materials (e.g., TiO2 P25) were further modified by adding metallic nanoparticles and thoroughly characterized via XRD, DRS UV–Vis, SEM, and SEM–EDX. Photocatalytic tests have been performed for two major applications, viz., hydrogen production via the photoreforming of glucose and the photoreduction of CO2 into different solar fuels. The latter tests were performed in a specially designed, high-pressure reactor with Ag/P25 supported catalysts, which exhibited about three times higher formic acid productivity (ca. 20 mol/kgcat h) compared to the dispersed catalyst, with enhanced stability and recoverability. It is to note that catalysts deposited on the glass slides can easily be recovered and the materials did not show any weight loss. To the best of our knowledge, the obtained formic acid productivity is highest among the published literature.

Highly Efficient and Effective Process Design for High-Pressure CO2 Photoreduction over Supported Catalysts

Ramis G.;
2023-01-01

Abstract

The photocatalytic reduction of CO2 into solar fuel is considered a promising approach to solving the energy crisis and mitigating the environmental pollution caused by anthropogenic CO2 emission. Some powder photocatalysts have been demonstrated as efficient, but their drifting properties, along with difficult separation (catalyst and product), make continuous mode reaction very challenging, particularly in the liquid phase. In order to make this process commercially viable and economically more efficient, we have developed a simple and scalable method for immobilizing TiO2 P25 over the surface of glass slides using an organic-based surfactant. Improved adhesion properties and the homogeneous dispersion of catalyst nanoparticles were achieved. A holder was designed with 3D printing technology in such a way that it can hold up to six slides that can be dipped simultaneously into the suspension or solution of desired materials for a uniform and homogeneous deposition. The resulting surfaces of the dip-coated materials (e.g., TiO2 P25) were further modified by adding metallic nanoparticles and thoroughly characterized via XRD, DRS UV–Vis, SEM, and SEM–EDX. Photocatalytic tests have been performed for two major applications, viz., hydrogen production via the photoreforming of glucose and the photoreduction of CO2 into different solar fuels. The latter tests were performed in a specially designed, high-pressure reactor with Ag/P25 supported catalysts, which exhibited about three times higher formic acid productivity (ca. 20 mol/kgcat h) compared to the dispersed catalyst, with enhanced stability and recoverability. It is to note that catalysts deposited on the glass slides can easily be recovered and the materials did not show any weight loss. To the best of our knowledge, the obtained formic acid productivity is highest among the published literature.
File in questo prodotto:
File Dimensione Formato  
energies-16-04990.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1148755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact