Calcitriol and hydroxyderivatives of lumisterol and tachisterol are secosteroid hormones with immunomodulatory and anti-inflammatory properties. Since the beginning of the COVID-19 pandemic, several studies have correlated deficient serum concentrations of vitamin D3 (calcifediol) with increased severity of the course of SARS-CoV-2 infection. Among systemic complications, subjective (anosmia, ageusia, depression, dizziness) and objective (ischemic stroke, meningo- encephalitis, myelitis, seizures, Guillain-Barré syndrome) neurological symptoms have been reported in up to 80% of severe COVID-19 patients. In this narrative review we will resume the pathophysiology of SARS-CoV-2 infection and the mechanisms of acute and chronic neurological damage. SARS-CoV-2 can disrupt the integrity of the endothelial cells of the blood-brain barrier to enter the nervous central system. Invasion of pro-inflammatory cytokines and polarization of astrocytes and microglia cells always in a pro-inflammatory sense together with the pro-coagulative phenotype of cerebral endothelial vessels in response to both SARS-CoV-2 and immune cells invasion (immunothrombosis) are the major drivers of neuro-damage. Calcitriol and hydroxyderivatives of lumisterol and tachisterol could play an adjuvant role in neuroprotection, through mitigation of neuroinflammation and protection of endothelial integrity of the blood-brain barrier. Dedicated studies on this topic are currently lacking and are desirable to confirm the link between vitamin D3 and neuroprotection in COVID-19 patients.

Understanding the immune-endocrine effects of vitamin D in SARS- CoV-2 infection: a role in protecting against neurodamage?

Emanuele Gotelli;Stefano Soldano;Elvis Hysa;Andrea Casabella;Andrea Cere;Carmen Pizzorni;Sabrina Paolino;Alberto Sulli;Maurizio Cutolo
2023-01-01

Abstract

Calcitriol and hydroxyderivatives of lumisterol and tachisterol are secosteroid hormones with immunomodulatory and anti-inflammatory properties. Since the beginning of the COVID-19 pandemic, several studies have correlated deficient serum concentrations of vitamin D3 (calcifediol) with increased severity of the course of SARS-CoV-2 infection. Among systemic complications, subjective (anosmia, ageusia, depression, dizziness) and objective (ischemic stroke, meningo- encephalitis, myelitis, seizures, Guillain-Barré syndrome) neurological symptoms have been reported in up to 80% of severe COVID-19 patients. In this narrative review we will resume the pathophysiology of SARS-CoV-2 infection and the mechanisms of acute and chronic neurological damage. SARS-CoV-2 can disrupt the integrity of the endothelial cells of the blood-brain barrier to enter the nervous central system. Invasion of pro-inflammatory cytokines and polarization of astrocytes and microglia cells always in a pro-inflammatory sense together with the pro-coagulative phenotype of cerebral endothelial vessels in response to both SARS-CoV-2 and immune cells invasion (immunothrombosis) are the major drivers of neuro-damage. Calcitriol and hydroxyderivatives of lumisterol and tachisterol could play an adjuvant role in neuroprotection, through mitigation of neuroinflammation and protection of endothelial integrity of the blood-brain barrier. Dedicated studies on this topic are currently lacking and are desirable to confirm the link between vitamin D3 and neuroprotection in COVID-19 patients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1137035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact