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Abstract 
Calcitriol and hydroxyderivatives of lumisterol and tachisterol are secosteroid hormones with 
immunomodulatory and anti-inflammatory properties. Since the beginning of the COVID-19 
pandemic, several studies have correlated deficient serum concentrations of vitamin D3 (calcifediol) 
with increased severity of the course of SARS-CoV-2 infection. Among systemic complications, 
subjective (anosmia, ageusia, depression, dizziness) and objective (ischemic stroke, meningo-
encephalitis, myelitis, seizures, Guillain-Barré syndrome) neurological symptoms have been reported 
in up to 80% of severe COVID-19 patients. In this narrative review we will resume the 
pathophysiology of SARS-CoV-2 infection and the mechanisms of acute and chronic neurological 
damage. SARS-CoV-2 can disrupt the integrity of the endothelial cells of the blood-brain barrier to 
enter the nervous central system. Invasion of pro-inflammatory cytokines and polarization of 
astrocytes and microglia cells always in a pro-inflammatory sense together with the pro-coagulative 
phenotype of cerebral endothelial vessels in response to both SARS-CoV-2 and immune cells invasion 
(immunothrombosis) are the major drivers of neuro-damage. Calcitriol and hydroxyderivatives of 
lumisterol and tachisterol could play an adjuvant role in neuroprotection, through mitigation of 
neuroinflammation and protection of endothelial integrity of the blood-brain barrier. Dedicated 
studies on this topic are currently lacking and are desirable to confirm the link between vitamin D3 

and neuroprotection in COVID-19 patients. 
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Introduction 
Vitamin D3 is a fat-soluble steroid hormone with pleiotropic biologic effects [1]. It derives both from 
food and from the physiological photoconversion of cutaneous 7-dehydrocholesterol into pre-
vitamin D3 and then into cholecalciferol following exposure to UV-B solar rays. Cholecalciferol binds 
to circulating vitamin D-binding protein (VBP) and in the liver is hydroxylated to calcifediol 
[25(OH)D3] by 25-hydroxylase enzyme (cytochrome CYP2R1). Calcifediol is then further hydroxylated 
to calcitriol [1,25(OH)2D3] by 1α-hydroxylase enzyme (cytochrome CYP27B1). Calcitriol is the active 
hormonal final form of vitamin D3 and can play both non-genomic and genomic effects, acting on 
vitamin D-receptor (VDR). Schematically, when hydroxylation in position 1 occurs in the kidney, 
calcitriol exerts endocrine rapid non-genomic effects on target cells (gut epithelial cells, osteoblasts, 
osteoclasts, parathyroid cells, tubular renal cells), regulating calcium-phosphorus homeostasis 
(shown in Fig. 1) [1]. On the other hand, when hydroxylation in position 1 occurs in immune cells, 
calcitriol exerts paracrine/autocrine slower genomic effects on immune cells themselves, 
downregulating autoimmune/inflammatory processes (shown in Fig. 1) [1]. Calcitriol is ultimately 
inactivated by 24-hydroxylase enzyme (cytochrome CYP24A1) into calcitroic acid, which is excreted in 
the bile and then eliminated in the faeces [1]. 
In addition to this canonical activation of pre-vitamin D3, a non-canonical pathway has also been 
identified [2]. After prolonged sun exposure, pre-vitamin D3 can be converted by CYP11A1 into two 
photoisomers, lumisterol (L3) and tachysterol (T3). L3 and T3 can be further hydroxylated to 
biologically active forms, such as 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, 24(OH)L3, 20(OH)T3, 25(OH)T3 by 
CYP27A1 [2]. These hydroxyderivatives interact with the VDR, but also with human aryl hydrocarbon 
receptor (AhR), liver X receptor (LXR) α and β, peroxisome proliferator-activated receptor γ (PPARγ) 
and retinoid-related orphan receptors (ROR) α and γ [3]. Of note, they don’t have calcemic 
properties, but they can affect immune function and proinflammatory pathways like calcitriol (Fig.1) 
[3]. 
In daily clinical practice, serum 25(OH)D3 concentrations are indicator of vitamin D3 status of a person 
(calcifediol has a long half-life of about three weeks). The ranges of normality of serum 25(OH)D3 
concentrations have been established by The Endocrine Society in 2011: concentrations lower than 
20 ng/ml are considered as “deficiency”, concentrations between 20 and 29 ng/ml are considered as 
“insufficiency” while concentrations greater than 29 ng/ml are considered as “normality” [4]. Normal 
serum 25(OH)D3 concentrations allow for adequate intestinal absorption of calcium and maintenance 
of normal serum parathormone values in most people, while a cut-off to ensure an 
immunomodulating effect has not yet been identified with absolute certainty [4].  
 
Vitamin D3 and respiratory infectious diseases 
The correlation between serum 25(OH)D3 concentrations and paracrine/autocrine anti-inflammatory 
effects has been extensively investigated in autoimmune and inflammatory conditions, including 
infectious diseases [1]. Heliotherapy has been the only treatment of tuberculosis for centuries, until 
the discovery of antibiotics [1]. In recent decades it has been clarified that the benefits of 
heliotherapy were due to the endogenous production of calcitriol, after the photoconversion of 7-
dehydrocholesterol in cholecalciferol. In fact, calcitriol stimulates the synthesis and release of 
cathelicidin by innate immunity cells (monocytes and neutrophils) of tuberculosis patients [5]. LL-37 
residue of cathelicidin is an antimicrobial peptide that damages lipoprotein membranes of 
Mycobacterium tuberculosis, hindering the formation of surface biofilms [5]. Moreover, LL-37 
induces the production of interleukin (IL)-8 by monocytes/macrophages with chemotactic function 
for neutrophils [5]. 
Consequently, great interest has developed in the correlation between serum 25(OH)D3 
concentrations and the course of other respiratory infections. A 2017 meta-analysis of 25 
randomized clinical trials (RCTs) (11321 participants) reported that vitamin D3 supplementation was 
associated with a reduction of the risk of acute respiratory infections, with an adjusted odds ratio of 
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0.88 [6]. Protection seemed greater in those subjects with baseline serum 25(OH)D3 concentrations < 
25 ng/ml [6]. Daily or at most weekly doses of vitamin D3 were more effective than monthly doses in 
raising serum 25(OH)D3 concentrations, as monthly supplementation boluses activated 24-
hydroxylase enzyme and therefore the catabolic pathway of vitamin D3 [7]. In 2021, an update of the 
previous meta-analysis included more RCTs (n = 46) and participants (n = 75541) and confirmed the 
protective effect of vitamin D3 supplementation against respiratory infections, with an odds ratio of 
0.92 [8]. 

After the spread of COVID-19 pandemic, the role of vitamin D3 in SARS-CoV-2 infection has been the 
object of thousands of studies and reports [9]. Deficient/insufficient serum 25(OH)D3 concentrations 
have been correlated with increased susceptibility to infection and more severe disease courses [10]. 
The biological basis of these observations will therefore be discussed below, first summarizing the 
pathophysiology of SARS-CoV-2 infection. Then, this narrative review will focus on neurological 
involvement of COVID-19, speculating on the protective role that vitamin D3 may exert in 
neuroprotection. 
 
SARS-CoV-2 pathophysiology 
SARS-CoV-2 is an RNA virus that is transmitted from human to human by airborne droplets [11]. 
Although there are some structural differences due to the different viral variants, SARS-CoV-2 virion 
is formed by essential proteins, such as nucleocapside proteins (N), membrane proteins (M) and a 
glycoprotein envelope (E), from which two spike proteins (S1 and S2) protrude. S1 and S2 adhere to 
upper respiratory tract cells and nasal olfactory mucosa. S1 binds to host receptor angiotensin-
converting enzyme 2 (ACE-2), while S2, cleaved and activated by host transmembrane protease 
serine-protease-2 (TMPRSS-2), fuses viral and host envelopes, integrating viral RNA within the human 
cells [11]. 
Subsequently, SARS-CoV-2 replicates and releases double-stranded RNA inside the cells, usually 
recognized by cytosolic pattern recognition receptors (PRRs), such as retinoic acid-inducible gene I 
(RIG-I) and melanoma differentiation-associated gene 5 (MDA5). These PRRs stimulate the 
production of type I (α and β) and type III (λ) interferons, which have a direct and indirect antiviral 
function, through the recruitment of the cells of the innate immunity. Neutrophils, monocytes and 
dendritic cells in turn present surface PRRs, such as Toll-like receptor (TLR)-2 and TLR-4, which 
recognizes viral glycoproteic envelope. TLR-2 and TLR-4 stimulate nuclear factor kappa b (NF-kB) 
signaling pathway, with activation of Nod-like receptor protein 3 (NLRP3) inflammasome. NLRP3 
releases pro-inflammatory cytokines (IL-1β, IL-18), that drive pyroptosis, the inflammatory form of 
programmed cell death [11]. Innate immunity cells then activate the more specific adaptive 
immunity (T and B lymphocytes) and SARS-CoV-2 infection ends in most cases within a few days, with 
patients reporting only flu-like symptoms (fever, nasopharyngitis, arthralgia) [11]. 
However, in a minority of cases, depending on different risk factors, SARS-CoV-2 can evade defense 
mechanisms, downregulating interferons production and blocking autophagy [12,13]. This allows 
SARS-CoV-2 to spread from the upper to lower respiratory tract, thus reaching the alveoli. The 
intense but ineffective inflammatory response that is activated in the lungs leads to a progressive 
worsening of respiratory function. Together with epithelial cell damage, inflammation disrupts 
integrity of the lung vascular endothelium, promoting a pro-coagulative phenotype [14]. 
Although not yet fully elucidated, the mechanisms leading to endothelial damage are multiple. The 
binding between SARS-CoV-2 and ACE-2 receptor unbalances the renin-angiotensin-aldosterone 
(RAS) system [15]. Under physiological conditions, a reduction in systemic blood pressure stimulates 
renal renin production, which cuts circulating angiotensinogen produced by the liver into various 
fragments, including angiotensin I. Angiotensin I is converted into angiotensin II by ACE enzyme and 
in turn ACE-2 enzyme converts angiotensin II to angiotensin 1-7. Angiotensin 1-7 acts on angiotensin 
type 2 and Mas receptors, promoting the expression of endothelial nitric oxide synthase and 
reducing platelet aggregation, with an overall vasodilatory, anti-inflammatory and antifibrotic effect 
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(shown in Fig. 2) [15]. Binding between SARS-CoV-2 and ACE-2 dramatically reduces the production 
of angiotensin 1-7 and conversely leads to the accumulation of angiotensin II, which acts on 
angiotensin type 1 receptor downregulating the expression of endothelial nitric oxide synthase and 
promoting platelet aggregation, with an overall vasoconstrictor, pro-inflammatory and pro-fibrotic 
effect (shown in Fig. 2). At vascular level, there is therefore an oxidative stress with the release of 
oxygen free radicals following episodes of hypoxia-ischemia which worsens endothelial damage [16]. 
Moreover, SARS-CoV-2 can induce a thrombotic endothelial damage, mediated by immune cells 
(immunothrombosis) (shown in Fig. 3). Following the activation of PRRs, monocytes express tissue 
factor on the surface, a protein that interacts with circulating coagulation factors to activate the 
extrinsic pathway of coagulation [11]. Furthermore, SARS-CoV-2 is recognized by the complement 
system via the mannose binding lectin, thus generating C5a fragment [17]. C5a is not only a 
chemoattractant for neutrophils, but also stimulates neutrophils to express tissue factor on the 
surface [17]. Activated neutrophils then extrude nuclear material to trap and eliminate viral particles 
(NETosis) [18]. These traps can in turn activate the coagulation cascade by interacting with factor XII 
of the intrinsic pathway of coagulation [11]. Finally, SARS-CoV-2 can directly disrupt endothelial tight 
junctions, causing the exposure by the endothelium itself of the tissue factor [11]. The result of this 
redundant stimulation of the coagulation system is the formation of the fibrin clot, also favored by a 
deficit of the fibrinolysis pathway (shown in Fig. 3) [11]. Indeed, COVID-19 patients have high serum 
concentrations of plasminogen activator inhibitor 1, which inhibits the fibrinolytic activity of tissue 
plasminogen activator and urokinase [11]. 
A systemic endothelial damage has been demonstrated in the peripheral skin circulation by nailfold 
videocapillaroscopy, a non-invasive examination that allows to analyze the morphology and number 
of capillaries at the level of nailfold beds with a magnification of 40-200 times [19]. A 
videocapillaroscopic analysis performed on 61 subjects recovered from COVID-19 revealed a 
significant reduction in skin capillary density compared to healthy population and possibly involved in 
tissue and organs hypoxia in presence of long-COVID [19,20]. 
In the most severe cases, the association between hyper-inflammatory cytokine storm and 
thrombotic events leads to systemic complications, among all acute respiratory distress syndrome, 
with multiorgan failure and patient’s death [11]. 
 
Vitamin D3 and SARS-CoV-2 infection 
The link between serum 25(OH)D3 concentrations and the course of SARS-CoV-2 infection has been 
extensively investigated and most studies agree that vitamin D3 deficiency is related to a poorer 
prognosis of the disease [1,9,21]. Serum 25(OH)D3 concentrations below 25 nmol/l have been 
associated with a higher risk of severe COVID-19 and systemic complications [22-24]. Potential 
associations between VDR genetic polymorphisms, which can affect the expression and function of 
the protein, and the severity and/or mortality for COVID-19 have been also investigated. FokI 
(rs2228570), TaqI (rs731236), BsmI (rs1544410) and ApaI (rs7975232) are VDR single nucleotide 
polymorphisms which have been variously associated with different aspects of COVID-19 
(susceptibility, severity, mortality). However, the results of observational, retrospective or case-
control studies on this topic have been conflicting and do not allow to determine with certainty 
which polymorphisms contribute most to mitigating or aggravating the disease, also considering the 
different viral variants [25-27]. 
Calcitriol and hydroxyderivatives of L3 and T3 could reduce SARS-CoV-2 invasion and replication, 
inflammation and endothelial damage [3]. In course of COVID-19, inadequate serum 25(OH)D3 
concentrations correlate with reduced ACE2 levels and ACE2 mRNA expression and calcitriol 
supplementation seems to restore ACE2 levels, re-establishing a physiological ratio of angiotensin 1-
7/angiotensin II concentrations (shown in Fig. 2) [28]. Calcitriol and hydroxyderivatives of L3 and T3 
can also bind to SARS-CoV-2 receptor binding domain of ACE2, hindering the interaction between the 
virus and the receptor [29]. Moreover, they can cause a conformational change in TMPRSS-2 
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structure, further reducing the probability of virus entry into the host cell [29]. Furthermore, in vitro 
experiments have demonstrated that hydroxyderivatives of L3 and T3 could block some of the 
proteases used by SARS-CoV-2 to replicate (3CL-Chymotripsin or Main protease, RNA-dependent RNA 
Polymerase) and calcitriol stimulates monocyte production of β-defensin 2 and cathelicidin, further 
reducing viral replication [30,31]. Active vitamin D3 also promotes the elimination of damaged 
(infected) cells by autophagy, upregulating the expression of Beclin 1 (activating factor of autophagy) 
and downregulating mTOR pathway (inhibitor pathway of autophagy) [32]. 
Regarding immune effects, calcitriol and hydroxyderivatives of L3 and T3 can mitigate inflammation, 
including the pro-inflammatory cytokine storm that can develop in the most severe cases of the 
disease. In an in vitro study, it has been demonstrated that calcitriol can downregulate NF-kB, a 
pivotal transcription factor for the activation of pro-inflammatory genes, in particular IL-1, IL-6, IL-8, 
IL12, IL-17, IL-23 and tumor necrosis factor (TNF) α [33,34]. L3 and T3-hydroxyderivatives of 
provitamin D3 can downregulate IL-17 production antagonizing not only NF-kB, but also ROR α and γ 
and AhR [35]. They also upregulate the expression of Nrf2, a transcription factor for several proteins 
with antioxidant and anti-inflammatory effects (glutamate-cysteine ligase catalytic subunit, 
glutathione S-transferase, NAD(P)H quinone oxidoreductase 1, heme oxygenase-1) [36,37]. 
Moreover, calcitriol can reduce neutrophil extracellular traps release in vitro, mitigating both 
inflammatory and endothelial damage (shown in Fig. 3) [38]. Calcitriol therefore stimulates the shift 
from T helper 1 (Th1) lymphocytes to Th2 lymphocytes (IL-10 production) with an anti-inflammatory 
effect, through an autocrine signaling induced by C3b fragment of complement [39]. 
At last, healthy subjects with serum 25(OH)D3 concentrations below 26 ng/ml show upregulation of 
the pro-coagulative platelet-monocyte and monocyte-endothelium interactions [40]. In vitro, 
calcitriol can also upregulate monocyte expression of thrombomodulin, a protein that reduces the 
activation of circulating factor VIII (intrinsic pathway of coagulation) and factor V (common pathway 
of coagulation) and which inhibits plasminogen activator inhibitor 1, with a final fibrinolytic effect 
and a protective role on the endothelium (shown in Fig. 3) [41]. 
 
SARS-CoV-2 neurodamage and the potential protective role of vitamin D3 
Self-reported and/or objectively detectable neurological symptoms are described in more than 80% 
of hospitalized COVID-19 patients [42]. The most frequent subjective symptom is headache, followed 
by changes in smell (anosmia) and taste (ageusia), depression and dizziness [42,43]. Objective 
neurological manifestations have also been reported such as ischemic stroke, meningo-encephalitis, 
myelitis, seizures, Guillain-Barré syndrome, demyelinating diseases and others [43]. 
It has been demonstrated that SARS-CoV-2 can infect peripheral nervous system, interacting with 
ACE-2 and TMPRSS-2 expressed by olfactory epithelial cells [44]. A review of 24 autoptic studies of 
149 brains of unvaccinated patients who died from COVID-19, revealed that viral RNA was detectable 
in brain or olfactory nerve at low levels by targeted quantitative reverse transcriptase polymerase 
chain reaction [45]. SARS-CoV-2 was also identified by immunohistochemistry in the 
glossopharyngeal and vagal nerves of another cohort of 43 unvaccinated patients (53% of cases) who 
died from COVID-19 [46].  
SARS-CoV-2 can also invade the central nervous system (CNS), using as receptors not only ACE-2 and 
TMPRSS-2, but also neuropilin-1, highly expressed by pericytes and astrocytes of the blood-brain 
barrier (BBB) [47]. In fact, a digital polymerase chain reaction investigation detected SARS-CoV-2 
nucleocapsid gene expression in multiple areas of the CNS (cervical spinal cord, olfactory nerve, basal 
ganglia, cerebral cortex, brainstem, cerebellum, thalamus, hypothalamus, corpus callosum and dura 
mater) of 44 unvaccinated patients who died from COVID-19 (100% of the study population) [48]. 
SARS-CoV-2 thus alters the permeability of the BBB, increasing the expression of matrix 
metalloproteinase-9 that destroys the basement membrane through the degradation of collagen IV 
and activates RhoA, a small G-protein, which promotes the disassembly of tight junctions through 
modifications of the cytoskeleton [49]. Moreover, the integrity of the BBB can be disrupted by 
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peripheral inflammation [50]. Pro-inflammatory cytokines (i.e., IL-1, IL-6, IL-17) upregulate the 
expression of adhesion molecules on BBB endothelial cells (E-selectin, VCAM-1, ICAM-1) and enter 
the CNS [50]. Then, they polarize resting microglial immune cells towards an M1 phenotype, which 
promotes neurotoxicity via the release of further IL-1β, IL-6, TNF-α, reactive oxygen species (ROS) 
[51]. M1 microglia induces also a neuroinflammatory reactive astrocyte phenotype, stimulating 
astrocytes to secrete pro-inflammatory cytokines and vascular endothelial growth factor, further 
weakening the BBB [50,52]. So, peripheral lymphocytes/cytokines infiltration cause 
neuroinflammation, that is detrimental to neurons, neurotransmission and neural circuit functions 
[53]. 
Neuroinflammation has been confirmed by a single-cell transcriptomic study of the brains of 8 
unvaccinated patients who died of COVID-19 [54]. In the choroid plexuses there was an up-regulation 
of genes (i.e., NQO1 and ZFP36), which caused a pro-inflammatory activation of microglia, through 
CCL and CXCL chemokines pathways [54]. Immunohistochemistry also showed a significant over-
expression of CD68 (marker of macrophage activation) in the choroid plexuses of COVID-19 patients 
compared to controls [54]. In another cohort, 41 brains of unvaccinated patients who died from 
COVID-19 were autopsied, and microglial activation (positivity for CD68 at immunohistochemistry) 
was detected in 81% of cases, with inflammatory infiltrate of T lymphocytes (positivity for CD3) in 
93% of cases [55]. 

Moreover, the viral and inflammatory damage of the BBB promotes the development of 
immunothrombosis at the level of the brain vessels [56]. In a 2021 meta-analysis, which considered 
108571 patients with COVID-19, acute cerebral vascular events were reported in 1.4% of cases, with 
cerebral ischemia as the main cause of stroke (87.4% of cases) [57]. Ischemic stroke was 
predominant in the large vessels with a multi-infarct distribution, supporting a thrombotic 
pathogenesis of the disease [57]. 
Of note, several studies have demonstrated anti-inflammatory and neuroprotective effects of 
vitamin D3. Calcitriol acts at multiple levels, first by reducing the expression of adhesion molecules on 
BBB, thus limiting the entry of inflammatory cells into the brain [58]. In mouse models of vascular 
diseases (arterial hypertension, ischemic stroke), microglial cells are polarized towards a M1 
phenotype (pro-inflammatory). However, they express VDR receptors on their surface and calcitriol 
promotes the shift from M1 to M2 (anti-inflammatory) phenotype. In fact, vitamin D3 modulates NF-
kB pathway, upregulating M2 microglial expression of IL-10 and downregulating production of ROS, 
interferon γ and TNFα [59-61]. Similarly, in mice in which cerebral oxidative stress has been induced 
to mimic memory impairment of Alzheimer’s disease, calcitriol downregulate NF-kB pathway and 
upregulate NRF-2 and HO-1 genes in the brain with an antioxidant effect [62]. 
Furthermore, VDR and CYP27B1 are also expressed by astrocytes and oligodendrocytes. Through an 
autocrine loop, calcitriol can reduce the release of IL-1, IL-6 and TNFα from reactive astrocytes [63]. 
Vitamin D3 promotes also oligodendrogenesis, and therefore the production of myelin, inducing 
oligodendrocyte precursor cells differentiation [64]. It is well known that deficient serum 25(OH)D3 
concentrations are a risk factor for the development of demyelinating lesions in course of multiple 
sclerosis [65]. Vitamin D3 therefore promotes the release of neurotrophic cytokines, including nerve 
growth factor and brain derived neurotrophic factor, supporting neuronal differentiation, growth and 
development [66]. 
The effects of L3 and T3-hydroxyderivatives on neuroimmunological mechanisms have not yet been 
elucidated, but they can interact with neuroinflammation, stimulating the activation of the 
hypothalamic-pituitary adrenal axis and therefore the release of glucocorticoids with 
immunosuppressive function [67]. 
At last, involvement of the CNS is part of the post-COVID-19 syndrome, known as long-COVID, which 
is defined as “the condition that occurs in individuals with a history of probable or confirmed SARS-
CoV-2 infection, usually three months from the onset of COVID-19, with symptoms that last for at 
least two months and cannot be explained by an alternative diagnosis” [68]. A recent meta-analysis 
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reported fatigue as the most common symptom of long-COVID, followed by memory problems 
(“brain fog”) [68]. Other commonly reported neurological symptoms are persistent changes in taste 
and smell, anxiety, depression and sleep disorders [69]. The pathophysiology of long-COVID is still 
partly unknown, but it is reasonable that the mechanisms of neurological damage are 
superimposable to those described in the acute phase, i.e. the passage of inflammatory cells through 
a damaged BBB in association with micro-thrombotic vascular disease which maintains chronic 
hypoxia and brain damage [69]. A very recent investigation reported that low serum 25(OH)D3 

concentrations at baseline of SARS-CoV-2 infection are correlated to the development of long-COVID 
symptoms, including neurocognitive ones, with an odds ratio of 1.09 after multiple-regression 
analyzes [70]. 
 
Conclusions 
Although nowadays the danger of acute SARS-CoV-2 infection has been mitigated by less aggressive 
viral variants and by mass vaccinations, adequate serum 25(OH)D3 concentrations in COVID-19 
patients could be protective against systemic complications, including acute and chronic neurological 
manifestations (long-COVID) [71,72]. Calcitriol and hydroxyderivatives of L3 and T3 show interesting 
neuroimmunoendocrine effects in course of SARS-CoV-2 infection and can play an adjuvant role in 
neuroprotection, reducing BBB endothelial damage, antagonizing vascular immunothrombosis and 
downregulating neuroinflammation. Specific studies in humans are desirable to confirm the evidence 
collected to date. 
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Figure Legends 
 
Fig. 1. Vitamin D3 biosynthesis and neuroimmunoendocrine effects.  
Cutaneous 7-dehydrocholesterol is converted to pre-vitamin D3 and further converted to cholecalciferol under the 
effects of UV-B rays. Cholecalciferol is then converted to calcifediol in the liver. Depending on the site where the 
hydroxylation of calcifediol to calcitriol occurs, the latter exerts rapid non-genomic actions (with effect on bone 
metabolism) or slower genomic actions (with effect on immune and inflammatory response). In case of overexposure 
to UV-B rays, pre-vitamin D3 is converted to tachisterol and lumisterol in the skin, the hydroxyderivatives of which 
seems to have similar neuroendocrine functions of calcitriol, without effects on bone metabolism (original figure 
drawn by co-author Dr Stefano Soldano with www.biorender.com).   
 
Fig. 2. Endothelial cell and ACE-2 in physiological conditions, during SARS-CoV-2 infection and under the effect of 
vitamin D3. Under physiological conditions, the expression of ACE-2 by endothelial cells allows the formation of 
angiotensin 1-7, which, by acting on AT2 receptor, has vasodilatory and antithrombotic effects. In course of SARS-
CoV-2 infection, the activity of ACE-2 is perturbed and the accumulation of angiotensin II causes vasoconstriction and 
promotes platelet aggregation and inflammation. Vitamin D3 can help to restore ACE2 expression on the surface of 
endothelial cell, decreasing accumulation of angiotensin II.  
Abbreviations: ACE-2: angiotensin-converting enzyme 2; Ang 1-7: angiotensin 1-7; Ang2: angiotensin II; AT1: 
angiotensin type 1 receptor; AT2: angiotensin type 2 receptor; NO: nitric oxide; VDR: vitamin D receptor (original 
figure drawn by co-author Dr Stefano Soldano with www.biorender.com).   
 
Fig. 3 Interplay between immune cells, inflammation and coagulation factors (immunothrombosis). The binding of 
SARS-CoV-2 with ACE-2 causes the increase of adhesion molecules on endothelial cells, promoting the passage of 
innate immunity cells into the endothelium. Monocytes recognize viral RNA fragments through their pattern 
recognition receptors (PRRs), expose tissue factor on their surface, and release pro-inflammatory cytokines, which 
damage the endothelium and attract additional monocytes and neutrophils. Neutrophils release their extracellular 
traps which further damage the endothelium and activate coagulation factor XII. The combination of damaged 
endothelium, platelet activation, complement activation, and the coagulation cascade leads to fibrin thrombus 
formation. The antithrombotic mechanisms proposed for vitamin D3 are reduction of nuclear extracellular traps and 
adhesion molecules by endothelial cells, increasing also thrombomodulin expression with an overall anti-coagulant 
effect (original figure drawn by co-author Dr Stefano Soldano with www.biorender.com).   
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