A pyrazole nucleus is an easy-to-prepare scaffold with large therapeutic potential. Consequently, the search for new pyrazole-based compounds is of great interest to the academic community as well as industry. In the last ten years, a large number of papers and reviews on the design, synthesis, and biological evaluation of different classes of pyrazoles and many pyrazole-containing compounds have been published. However, an overview of pyrazole derivatives bearing a free amino group at the 3, 4, or 5 position (namely, 3-aminopyrazoles, 4-aminopyrazoles, and 5-aminopyrazoles, respectively) and their biological properties is still missing, despite the fact that aminopyrazoles are advantageous frameworks able to provide useful ligands for receptors or enzymes, such as p38MAPK, and different kinases, COX and others, as well as targets important for bacterial and virus infections. With the aim to fill this gap, the present review focuses on aminopyrazole-based compounds studied as active agents in different therapeutic areas, with particular attention on the design and structure-activity relationships defined by each class of compounds. In particular, the most relevant results have been obtained for anticancer/anti-inflammatory compounds, as the recent approval of Pirtobrutinib demonstrates. The data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "aminopyrazole" as the keyword.

Amino-Pyrazoles in Medicinal Chemistry: A Review

Matteo Lusardi;Andrea Spallarossa;Chiara Brullo
2023-01-01

Abstract

A pyrazole nucleus is an easy-to-prepare scaffold with large therapeutic potential. Consequently, the search for new pyrazole-based compounds is of great interest to the academic community as well as industry. In the last ten years, a large number of papers and reviews on the design, synthesis, and biological evaluation of different classes of pyrazoles and many pyrazole-containing compounds have been published. However, an overview of pyrazole derivatives bearing a free amino group at the 3, 4, or 5 position (namely, 3-aminopyrazoles, 4-aminopyrazoles, and 5-aminopyrazoles, respectively) and their biological properties is still missing, despite the fact that aminopyrazoles are advantageous frameworks able to provide useful ligands for receptors or enzymes, such as p38MAPK, and different kinases, COX and others, as well as targets important for bacterial and virus infections. With the aim to fill this gap, the present review focuses on aminopyrazole-based compounds studied as active agents in different therapeutic areas, with particular attention on the design and structure-activity relationships defined by each class of compounds. In particular, the most relevant results have been obtained for anticancer/anti-inflammatory compounds, as the recent approval of Pirtobrutinib demonstrates. The data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using "aminopyrazole" as the keyword.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1130415
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact