The increasingly massive use of advanced Machine Learning methodologies in the financial field sector has led credit institutions to quickly move to new FinTech technologies. This paper deals with how a battery of Artificial Neural Networks (ANN), dedicated to the automatic recognition of financial patterns of potential interest to traders, can be designed and validated. The battery of neural networks that have been designed is composed of a shallow ANN, a deep ANN with ReLu, a deep ANN with Dropout and a convolutional network (ConvNet). Depending on the type of classification problem, the ANN battery dynamically recognizes the best classifier and makes use of it for pattern recognition. The first part of the paper describes how these technologies work, the second one performs a validation of the code and the third one suggests a technical analysis application on financial time series.

Design of an Artificial Neural Network battery for an optimal recognition of patterns in financial time series

Pier Giuseppe Giribone;
2018-01-01

Abstract

The increasingly massive use of advanced Machine Learning methodologies in the financial field sector has led credit institutions to quickly move to new FinTech technologies. This paper deals with how a battery of Artificial Neural Networks (ANN), dedicated to the automatic recognition of financial patterns of potential interest to traders, can be designed and validated. The battery of neural networks that have been designed is composed of a shallow ANN, a deep ANN with ReLu, a deep ANN with Dropout and a convolutional network (ConvNet). Depending on the type of classification problem, the ANN battery dynamically recognizes the best classifier and makes use of it for pattern recognition. The first part of the paper describes how these technologies work, the second one performs a validation of the code and the third one suggests a technical analysis application on financial time series.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1117610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact