We consider dynamic motions of a spatial robot suspended by six cables, arranged so as to form three parallelograms. Each parallelogram is composed by two parallel cables sharing the same length. Due to this arrangement, the end-effector can only translate. The cables in each parallelogram can be actuated by one motor: only three motors are then required, which reduces the robot complexity and cost. This robot may perform pick-and-place operations over large workspaces. We find tight conditions for feasibility of dynamic trajectories for the general architecture, and also special conditions such that the robot is dynamically equivalent to a 3-cable robot with a point-mass end-effector: then, the feasibility conditions previously developed for the dynamic trajectories of 3-cable point-mass robots can be profitably reused for the present case. To practically realize such dynamic trajectories, we also analyze the reachable, singularity-free and interference-free workspace, finding analytical expressions of their loci. Finally, we perform experiments where the robot follows dynamic trajectories outside its static workspace, thus finding confirmation that the orientation remains approximately constant.
Dynamically feasible motions of a class of purely-translational cable-suspended parallel robots
Mottola, Giovanni;
2019-01-01
Abstract
We consider dynamic motions of a spatial robot suspended by six cables, arranged so as to form three parallelograms. Each parallelogram is composed by two parallel cables sharing the same length. Due to this arrangement, the end-effector can only translate. The cables in each parallelogram can be actuated by one motor: only three motors are then required, which reduces the robot complexity and cost. This robot may perform pick-and-place operations over large workspaces. We find tight conditions for feasibility of dynamic trajectories for the general architecture, and also special conditions such that the robot is dynamically equivalent to a 3-cable robot with a point-mass end-effector: then, the feasibility conditions previously developed for the dynamic trajectories of 3-cable point-mass robots can be profitably reused for the present case. To practically realize such dynamic trajectories, we also analyze the reachable, singularity-free and interference-free workspace, finding analytical expressions of their loci. Finally, we perform experiments where the robot follows dynamic trajectories outside its static workspace, thus finding confirmation that the orientation remains approximately constant.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.