The lipid, fatty acid, protein, and carbohydrate contents in cyanobacterial strains and biomass can vary by orders of magnitude. Many publications (thousands of peer-reviewed articles) require more work to extract their precise concentration values (i.e., different units, inaccurate data), which makes them not easily exploitable. For this purpose, tables have been compiled from the literature data, including lipids, fatty acids, proteins, and carbohydrates composition and quantities in cyanobacteria. A lot of data (323) were collected after careful a literature search, according to selected criteria in order to distinguish separately cyanobacteria, and according to categories of genus and species and generate average values of the contents of these cell components. These data are exploited in a first systematic analysis of the content in types of strains. Our database can be a powerful tool for biologists, chemists, and environmental agencies to determine the potential concentration of high-value chemical building blocks directly from low-value bloom biomass, cell cultures, or debris in the sediment, offering the potential to minimize environmental waste and add value to the agro-industrial residues. The database can also support strategies for food manufacturers to develop new products with optimized properties for veterinarian applications.
Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application
Converti, A;
2023-01-01
Abstract
The lipid, fatty acid, protein, and carbohydrate contents in cyanobacterial strains and biomass can vary by orders of magnitude. Many publications (thousands of peer-reviewed articles) require more work to extract their precise concentration values (i.e., different units, inaccurate data), which makes them not easily exploitable. For this purpose, tables have been compiled from the literature data, including lipids, fatty acids, proteins, and carbohydrates composition and quantities in cyanobacteria. A lot of data (323) were collected after careful a literature search, according to selected criteria in order to distinguish separately cyanobacteria, and according to categories of genus and species and generate average values of the contents of these cell components. These data are exploited in a first systematic analysis of the content in types of strains. Our database can be a powerful tool for biologists, chemists, and environmental agencies to determine the potential concentration of high-value chemical building blocks directly from low-value bloom biomass, cell cultures, or debris in the sediment, offering the potential to minimize environmental waste and add value to the agro-industrial residues. The database can also support strategies for food manufacturers to develop new products with optimized properties for veterinarian applications.File | Dimensione | Formato | |
---|---|---|---|
A421.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
925.14 kB
Formato
Adobe PDF
|
925.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.