This paper proposes a framework to investigate the influence of physical interactions to sensory information, during robotic palpation. We embed a capacitive tactile sensor on a robotic arm to probe a soft phantom and detect and classify hard inclusions within it. A combination of PCA and K-Means clustering is used to: first, reduce the dimensionality of the spatiotemporal data obtained through the probing of each area in the phantom; second categorize the re-encoded data into a given number of categories. Results show that appropriate probing interactions can be useful in compensating for the quality of the data, or lack thereof. Finally, we test the proposed framework on a palpation scenario where a Support Vector Machine classifier is trained to discriminate amongst different types of hard inclusions. We show the proposed framework is capable of predicting the best-performing motion strategy, as well as the relative classification performance of the SVM classifier, solely based on unsupervised cluster analysis methods.

Structuring of tactile sensory information for category formation in robotics palpation

Maiolino P;
2020-01-01

Abstract

This paper proposes a framework to investigate the influence of physical interactions to sensory information, during robotic palpation. We embed a capacitive tactile sensor on a robotic arm to probe a soft phantom and detect and classify hard inclusions within it. A combination of PCA and K-Means clustering is used to: first, reduce the dimensionality of the spatiotemporal data obtained through the probing of each area in the phantom; second categorize the re-encoded data into a given number of categories. Results show that appropriate probing interactions can be useful in compensating for the quality of the data, or lack thereof. Finally, we test the proposed framework on a palpation scenario where a Support Vector Machine classifier is trained to discriminate amongst different types of hard inclusions. We show the proposed framework is capable of predicting the best-performing motion strategy, as well as the relative classification performance of the SVM classifier, solely based on unsupervised cluster analysis methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1102831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact