Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. The dataset is built by first optimizing a set of adversarial patches against an ensemble of models, using a state-of-the-art attack that creates transferable patches. The corresponding patches are then randomly rotated and translated, and finally applied to the ImageNet data. We use ImageNet-Patch to benchmark the robustness of 127 models against patch attacks, and also validate the effectiveness of the given patches in the physical domain (i.e., by printing and applying them to real-world objects). We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch.

ImageNet-Patch: A dataset for benchmarking machine learning robustness against adversarial patches

Demetrio L.;Roli F.
2023-01-01

Abstract

Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. The dataset is built by first optimizing a set of adversarial patches against an ensemble of models, using a state-of-the-art attack that creates transferable patches. The corresponding patches are then randomly rotated and translated, and finally applied to the ImageNet data. We use ImageNet-Patch to benchmark the robustness of 127 models against patch attacks, and also validate the effectiveness of the given patches in the physical domain (i.e., by printing and applying them to real-world objects). We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch.
File in questo prodotto:
File Dimensione Formato  
ImageNet_Patch_First_Revision.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in Pre-print
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1098121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 8
social impact