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Abstract

Adversarial patches are optimized contiguous pixel blocks in an input

image that cause a machine-learning model to misclassify it. However, their

optimization is computationally demanding, and requires careful hyperpa-

rameter tuning, potentially leading to suboptimal robustness evaluations.

To overcome these issues, we propose ImageNet-Patch, a dataset to bench-

mark machine-learning models against adversarial patches. The dataset is

built by first optimizing a set of adversarial patches against an ensemble of

models, using a state-of-the-art attack that creates transferable patches. The

corresponding patches are then randomly rotated and translated, and finally

applied to the ImageNet data. We use ImageNet-Patch to benchmark the

robustness of 127 models against patch attacks, and also validate the effec-

tiveness of the given patches in the physical domain (i.e., by printing and
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applying them to real-world objects). We conclude by discussing how our

dataset could be used as a benchmark for robustness, and how our method-

ology can be generalized to other domains. We open source our dataset and

evaluation code at https://github.com/pralab/ImageNet-Patch.

Keywords: adversarial machine learning, adversarial patches, neural

networks, defense, detection

1. Introduction

Understanding the security of machine-learning models is of paramount

importance nowadays, as these algorithms are used in a large variety of set-

tings, including security-related and mission-critical applications, to extract

actionable knowledge from vast amounts of data. Nevertheless, such data-

driven algorithms are not robust against adversarial perturbations of the

input data [1, 2, 3, 4]. In particular, attackers can hinder the performance

of classification algorithms by means of adversarial patches [5], i.e., contigu-

ous chunks of pixels which can be applied to any input image to cause the

target model to output an attacker-chosen class. When embedded into input

images, adversarial patches produce out-of-distribution samples. The rea-

son is that the injected patch induces a spurious correlation with the target

label, which is likely to shift the input sample off the manifold of natural

images. Adversarial patches can be printed as stickers and physically placed

on real objects, like stop signs that are then recognized as speed limits [6],

and accessories that camouflage the identity of a person, hiding their real
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identity [7, 8]. Therefore, the evaluation of the robustness against these at-

tacks is of the uttermost importance, as they can critically impact real-world

applications with physical consequences.

The only way to assess the robustness of a machine-learning system

against adversarial patches is to generate and test them against the tar-

get model of choice. Adversarial patches are created by solving an opti-

mization problem via gradient descent. However, this process is costly as

it requires both querying the target model many times and computing the

back-propagation algorithm until convergence is reached. Hence, it is not

possible to obtain a fast robustness evaluation against adversarial patches

without avoiding all the computational costs required by their optimization

process. To further exacerbate the problem, adversarial patches should also

be effective under different transformations, including translation, rotation

and scale changes. This is required for patches to work also in the physi-

cal world, where it is impossible to place them in a controlled manner, i.e.,

to control the acquisition and environmental conditions. Moreover, adver-

sarial patches should also be transferable to different models, given that, in

practice, the target model may not be exactly known to the attacker.

To overcome these issues, in this work we propose ImageNet-Patch, a

dataset of pre-optimized adversarial patches that can be used to benchmark

machine-learning models with small computational overhead. This dataset is

constructed on top of a subset of the validation set of the ImageNet dataset,

coherently with other state-of-the-art benchmarks for robust models [10].
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It consists of 10 patches that target 10 different classes, applied on 5, 000

images each, for a total of 50, 000 samples. We create these patches using

the adversarial patch attack proposed in [5], which targets an ensemble of

models to ensure that the resulting patches transfer well across different

models (Section 2). The patches are also optimized to work under different

rotation and translation. This makes them suited to stage physical attacks

where the acquisition and environmental conditions cannot be controlled.

To build our benchmark, we follow a three-step methodology, as depicted

in Figure 1: (i) patch creation, which amounts to optimizing adversarial

(transferable) patches on the ImageNet dataset; (ii) dataset generation, which

consists of applying the aforementioned patches via random affine transfor-

mations; and (iii) robustness evaluation, which amounts to assessing the ro-

bustness of the given models, and provides an appropriate ranking. Even

though the resulting robustness evaluation will be approximate, this process

is extremely simple and fast, as newly-proposed defensive or robust learning

mechanisms can be directly tested on the provided dataset, i.e., avoiding to

repeat the patch-creation and dataset-generation steps (Section 3).

We test the efficacy of ImageNet-Patch by evaluating 15 models that were

not part of the initial ensemble as a test set, divided into 3 standard-trained

models and 3 robustly-trained models, and we highlight the successful gen-

eralization of the patches to unseen models (Section 4). We also evaluate

the effectiveness of the given patches in a real-world scenario by printing

and applying them to three distinct physical objects, and acquiring 90 dis-
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Figure 1: The three-step methodology followed to build our ImageNet-Patch benchmark.

tinct images. Our results demonstrate that this dataset can provide a quick

yet approximate evaluation of the adversarial robustness of machine-learning

models, avoiding the cumbersome task of re-optimizing the patches against

each model. To foster reproducibility, we open-source the optimized patches

along with the code used for evaluation.1

We conclude by discussing related work (Section 5), as well as the limita-

tions and future directions of our work (Section 6), envisioning a leaderboard

of machine-learning models based on their robustness to ImageNet-Patch.

2. Crafting Transferable Adversarial Patches

Attackers can compute adversarial patches by solving an optimization

problem with gradient-descent algorithms [5]. Since these patches are meant

to be printed and attached to real-world objects, their effectiveness should

not be undermined by the application of affine transformations, like rotation,

1https://github.com/pralab/ImageNet-Patch
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translation and scale, that are unavoidable when dealing with this scenario.

For example, an adversarial patch placed on a traffic sign should be invari-

ant to scale changes to remain effective while an autonomous driving car ap-

proaches the traffic sign, or to camera rotation when taking pictures. Hence,

the optimization process must include these perturbations as well, to force

such invariance inside the resulting patches. Also, adversarial patches can

either generate a general misclassification, namely an untargeted attack, or

force the model to predict a specific class, namely a targeted attack. In this

paper, we focus on the latter, and we consider a patch effective if it is able

to correctly pilot the decision-making of a model toward an intended class.

More formally, targeted adversarial patches are computed by solving the

following optimization problem:

min
δ

EA∼T

[
J∑

j=1

L(xj ⊕Aδ, yt;θ)

]
, (1)

where δ is the adversarial patch to be computed, xj is one of J samples of the

training data, yt is the target label,2 θ is the targeted model, A is an affine

transformation randomly sampled from a set of affine transformations T , L

is a loss function of choice, that quantifies the classification error between the

target label and the predicted one and ⊕ is a function that applies the patch

on the input images. The latter is defined as: x⊕δ = (1−µ)⊙x+µ⊙δ, where

2The same formulation holds for crafting untargeted attacks, by simply substituting
the target label yt with the ground truth label of the samples y, and inverting the sign of
the loss function.
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we introduce a mask µ that is a tensor with the same size of the input data

x, and whose components are ones where the patch should be applied and

zeros elsewhere [9]. This operator is still differentiable, as it is constructed

by summing differentiable functions themselves; thus, it is straightforward

to obtain the gradient of the loss function with respect to the patch.

To produce a dataset that can be used as a benchmark for an initial

robustness assessment, with adversarial patches effective regardless of the

target model, we leverage the technique proposed by Brown et al. [5], that

considers an ensemble of differentiable models inside the optimization pro-

cess. This addition forces the optimization algorithm to find effective so-

lutions against all the ensemble models, boosting the transferability of the

produced adversarial patches. Namely, the ability of the adversarial patch

optimized against a model (or a set of them) to be effective against different

models. Hence, the loss function to be minimized can be written as:

min
δ

EA∼T

[
M∑

m=1

J∑
j=1

L(xj ⊕Aδ, yt;θm)

]
, (2)

where we modified the original formulation in Equation 1 to minimize the

loss L over a set of M models, respectively parameterized via θ1, ...,θM .

The objective function defined in Equation 2 can be optimized through

gradient-descent techniques, and thus we use Algorithm 1 for minimizing it.

After having randomly initialized the patch (line 1), we loop through the

number of intended epochs (line 2), and the samples of the training data
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Figure 2: The optimization process, graphically described. At each step, we apply the
patch to be optimized with random affine transformations on sample images, and we
compute the scores of the ensemble. Hence, the algorithm computes the update step
through gradient descent on the loss function w.r.t. the patch.

(line 4). In each epoch, we sample a random affine transformation that will

be applied to the patch (line 5). We differ from the original formulation of

Brown et. al [5], as we solely consider rotations and translations. We iterate

over all models of the ensemble (line 6) to calculate the loss by accumulating

its gradient w.r.t. the patch (line 7), and using it to update the patch at the

end of each epoch (line 8). After all the epochs have been consumed, the

final adversarial patch is returned (line 9). If the number of training samples

is large, this algorithm can be easily generalized to a more efficient version

using the gradient computed on a mini-batch to perform the updates, i.e.

repeating the steps 3-8 for each batch of the training data. We present a

graphical representation of our procedure in Figure 2.
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Algorithm 1 Optimization of adversarial patches on an ensemble of models

Input : x, the training dataset containing J images; yt, the target class;
θ1, ..,θM , the ensemble of models; γ, the learning rate; N , the
number of epochs.

Output: δ, the adversarial patch
1 δ ∼ U(0, 1) ▷ Initialize patch with uniform distribution

2 for i ∈ [1, N ] do
3 g ← 0 ▷ Initialize gradient update for epoch i
4 for j ∈ [1, J ] do
5 A← random-affine() ▷ Initialize transformation

6 for m ∈ [1,M ] do
7 g ← g + 1

MJ
∇δL(xj ⊕Aδ, yt;θm) ▷ Accumulate gradients

8 δ ← δ − γg ▷ Optimize patch

9 return δ ▷ Return optimized patch

3. The ImageNet-Patch Dataset

We now illustrate how we apply our methodology to generate the ImageNet-

Patch dataset that will be used to evaluate the robustness of classification

models against patch attacks.

The Baseline Dataset. We start from the validation set of the original Im-

ageNet database,3 containing 1, 281, 167 training images, 50, 000 validation

images and 100, 000 test images, divided into 1, 000 object classes. From the

validation set, we select a test set of 5, 000 images that matches exactly the

ones used in RobustBench [10] for testing model robustness against adver-

sarial attacks. This allows us not only to provide a direct comparison with

the RobustBench framework, but also to easily add our benchmark to it. We

3https://www.image-net.org/challenges/LSVRC/index.php
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create the corpus of images used to optimize adversarial patches from the

remaining part of the ImageNet validation set, excluding the images used for

the test set, and randomly sampling 20 images from different classes. Each

patch is then optimized on these samples except the images of the target

class of the attack. To clarify, if the attack is targeting the class “cup”, we

select one image for each of 20 different classes selected from the remaining

999 classes of the ImageNet dataset.

The ImageNet-Patch Dataset. We now discuss how we generate the

ImageNet-Patch dataset. We apply the methodology proposed by Brown et

al. [5] that optimizes adversarial patches on an ensemble of chosen models,

and we select three deep neural network architectures trained on the Im-

ageNet dataset, namely AlexNet [11], ResNet18 [12] and SqueezeNet [13].

We leverage the pretrained models available inside the PyTorch TorchVision

zoo,4 that are trained to take in input RGB images of size 224× 224.

We run Algorithm 1 to create squared patches with a size of 50 × 50

pixels, with a learning rate of 1, 20 training samples selected as previously

described, 5000 training epochs, and using the cross-entropy as the loss func-

tion of choice. We consider rotation and translation as the applied affine

transformations during the optimization of the patch, constraining rotations

up to ±π
8
to mimic the setup applied by Brown et al.[5], and translations to

a shift of ±68 pixels on both axes from the center of the image. The latter is

4https://pytorch.org/vision/master/models.html
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soap dispenser cornet plate banana cup

typewriter keyboard electric guitar hair spray sock cellular telephone

Figure 3: The 10 optimized adversarial patches, along with their target labels.

a heuristic constraint, as we want to avoid corner cases where the adversarial

patch is too close to the boundaries of the image. We also keep the size of

the adversarial patch fix to 50× 50 pixels during the optimization process.

We optimize 10 different patches with these settings, targeting 10 different

classes of the ImageNet dataset (“soap dispenser”, “cornet”, “plate”, “ba-

nana”, “cup”, “typewriter keyboard”, “electric guitar”, “hair spray”, “sock”,

“cellular phone”). The resulting patches are shown in Figure 3. We apply

such patches to each of the 5, 000 images in the test set along with random

affine transformations, generating a dataset of 50, 000 perturbed images with

adversarial patches. We depict some examples in Figure 4.

4. Experimental Analysis

We now showcase experimental results related to the robustness evalu-

ation through the usage of our ImageNet-Patch dataset. We first explain
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Figure 4: A batch of clean images initially predicted correctly by a SqueezeNet [13] model,
and its perturbation with 2 different adversarial patches. Each row contains the original
image with a different patch, whose target is displayed in the left. The predictions are
shown on top of each of the samples, in green for correct prediction, blue for misclassifica-
tion, and in red for a prediction that ends up in the target class of the attack.

the metrics (Section 4.1), and which models we consider for evaluating our

dataset (Section 4.2). We then proceed in detailing the results of our exper-

iments (Section 4.3), by considering the previously introduced metrics, and

lastly we show the same measurements but extended to a large-scale model

selection (Section 4.4).

4.1. Evaluation Metrics

We evaluate the evasion performance of the ImageNet-Patch dataset by

considering three metrics: (i) the clean accuracy, which is the accuracy of

the target model in absence of attacks; (ii) the robust accuracy, which is the
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accuracy of the target model in presence of adversarial patches; and (iii) the

success rate of a patch, that measures the percentage of samples for which

the patch successfully altered the prediction of the target model toward the

intended class.

Clean Accuracy. We denote with the operator Ak(x, y;θ) the top-k accu-

racy, i.e. by inspecting if the desired class y appears in the set of k high-

est outputs of the classification model θ when receiving the sample x as

input. We then use this operator for defining the clean accuracy Ck, as

Ck = E
(x,y)∼Dtest

[Ak(x, y;θ)] , and the other metrics that we use for our ex-

perimental evaluation.

Robust Accuracy. We define the value Rk as the top-k accuracy on the

images after the application of the patch with the random rototranslation

transformations, formalized as Rk = E
(x,y)∼Dtest

A∼T

[Ak(x⊕Aδ, y;θ)].

Success Rate. We define the value Sk as the success rate of the attack, i.e.

the top-k accuracy on the target label yt instead of the ground truth label

y, formalized as Sk = E
(x,y)∼Dtest

A∼T

[Ak(x⊕Aδ, yt;θ)] We evaluate these three

metrics for k = 1, 5, 10.

4.2. Evaluation Protocol

To evaluate the effectiveness of the patches, we test our ImageNet-Patch

dataset against 127 deep neural networks trained on the ImageNet dataset.

To facilitate the discussion, we group the models in 5 groups, namely the

ENSEMBLE, STANDARD, ADV-ROBUST, AUGMENTATION, MORE-DATA groups. In a
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first analysis, we consider 15 models to discuss results in detail, and further

extend the analysis with a large-scale analysis, presented in Section 4.4. In

particular, we consider the three models used for the ensemble, AlexNet [11],

ResNet18 [12] and SqueezeNet [13], as the first group, ENSEMBLE. We con-

sider for the second group, STANDARD, 3 standard-trained models, that are

GoogLeNet [14], MobileNet [15] and Inception v3 [16], available in PyTorch

Torchvision. We then consider 3 robust-trained models as the ADV-ROBUST

available on RobustBench, specifically a ResNet-50 proposed by Salman et

al. [17], a ResNet-50 proposed by Engstrom et al. [18] and a ResNet-50 pro-

posed byWong et al. [19]. We also additionally consider a set of 6 models from

the ImageNet Testbed repository5 proposed by Taori et al. [20], to analyze the

effects of non-adversarial augmentation techniques and of training on bigger

datasets. We select 3 models specifically trained for being robust to common

image perturbations and corruptions, namely the models proposed by Zhang

et al. [21], Hendrycks et al [22], and Engstrom et al [23], that we group as

AUGMENTATION group. We further select other 3 models, namely two of the

ones proposed by Yalniz et al. [24] and one proposed by Mahajan et al. [25],

that have been trained on datasets that utilize substantially more training

data than the standard ImageNet training set. We group these last models

as the MORE-DATA group. Lastly, the STANDARD, ADV-ROBUST, AUGMENTATION,

and MORE-DATA groups will be referred as the Unknown models, since they

5https://github.com/modestyachts/imagenet-testbed
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are not used while optimizing the adversarial patches.

4.3. Experimental Results

We now detail the effectiveness of our dataset against the groups we

have isolated, according to the chosen metrics. The results are reported in

Table 1 and Figure 5, where we confront the relation between clean and

robust accuracy, and also between robust accuracy and success rate.

Evaluation of Known Models. The ENSEMBLE group of models is charac-

terized by low robust accuracy and the highest success rate of the adversarial

patch, as expected, given that we optimize our adversarial patches to specif-

ically mislead these models (they are part of the training ensemble).

Evaluation of Unknown Models. These models are not part of the en-

semble used to optimize the adversarial patches. First of all, all of them

highlight a good clean accuracy on our clean test set of images.

The STANDARD group is characterized by a modest decrement of the robust

accuracy, highlighting errors caused by the patches. The success rate is

lower compared to those exhibited by the ENSEMBLE group, since patches are

not optimized on these models, but it raises considerably when considering

different top-k results. This means that, even if the target class is not the

predicted one, its confidence is still significantly increased.

The ADV-ROBUST group is characterized by a drop of robust accuracy

similar to the STANDARD group, but with an almost-zero success rate for the

adversarial patches. This means that the predictions of robust models are
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still wrong, but they do not coincide with the target class.

The AUGMENTATION group contains mixed results, shifting from a modest

to a severe drop in terms of robust accuracy, associated with an increment

of the success rate, which is slightly less than that achieved by the STANDARD

group. This might imply that data augmentation helps the model to improve

clean accuracy, but performance drops when dealing with adversarial noise.

Lastly, the MORE-DATA group scores the best in terms of both clean and

robust accuracy while the success rate of the adversarial patches is similar

to the AUGMENTATION group results.

4.4. Large-scale Analysis

We now discuss the effectiveness of our dataset on a large-scale setting,

where we extend the analysis to a pool of 127 models, including also the

ones already tested in Section 4.3. These are all the models available in

RobustBench [10] and in ImageNet Testbed [20], again divided into the same

groups (STANDARD, ADV-ROBUST, AUGMENTATION and MORE-DATA). We plot our

benchmark in Figure 6, confirming the results presented in Section 4.3. To

better highlight the efficacy of our adversarial patches, we also depict the

difference in terms of accuracy of these target models scored by applying our

pre-optimized patches and randomly-generated ones in Figure 7. The top

row shows the results for the pre-optimized patches, while the bottom row

focuses on the random ones, and each plot also shows a robust regression

line, along with its 95% confidence interval.
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Figure 5: Analysis for results shown in Table 3. Top row : top-1 (left), top-5 (center),
and top-10 (right) clean accuracy vs robust accuracy. Bottom row : top-1 (left), top-5
(center), and top-10 (right) robust accuracy vs attack success rate. The Pearson correlation
coefficient ρ and the p-value are also reported for each plot.

The regression we compute on our metrics highlights meaningful obser-

vations we can extract from the benchmark. First, the robust accuracy of

each model evaluated with random patches can be still computed as a linear

function of clean accuracy, as shown by the plot of the second row of Figure 7.

Hence, the clean accuracy can be seen as an accurate estimator of the robust

accuracy when using random patches, similarly to what has been found by

Taori et al. [20]. However, when we evaluate the robustness with our pre-
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top-1 top-5 top-10

Model C1 R1 S1 C5 R5 S5 C10 R10 S10

E
N
S
E
M
B
L
E AlexNet [11] 0.562 0.113 0.256 0.789 0.250 0.504 0.849 0.327 0.613

ResNet18 [12] 0.697 0.289 0.431 0.883 0.535 0.739 0.923 0.641 0.839

SqueezeNet [13] 0.580 0.094 0.610 0.804 0.259 0.865 0.865 0.355 0.926

S
T
A
N
D
A
R
D GoogLeNet [14] 0.697 0.469 0.090 0.895 0.702 0.326 0.932 0.778 0.482

MobileNet [15] 0.737 0.541 0.017 0.910 0.764 0.083 0.945 0.826 0.141

Inception v3 [16] 0.696 0.412 0.106 0.883 0.628 0.317 0.921 0.703 0.426

A
D
V
-
R
O
B
U
S
T Engstrom et al. [18] 0.625 0.495 0.005 0.838 0.720 0.026 0.887 0.789 0.051

Salman et al. [17] 0.641 0.486 0.003 0.845 0.711 0.017 0.894 0.780 0.034

Wong et al. [19] 0.535 0.385 0.003 0.765 0.612 0.020 0.833 0.695 0.039

A
U
G
M
.

Zhang et al. [21] 0.566 0.191 0.093 0.790 0.370 0.241 0.848 0.459 0.330

Hendrycks et al [22] 0.769 0.632 0.020 0.929 0.842 0.104 0.956 0.890 0.181

Engstrom et al [23] 0.684 0.495 0.036 0.886 0.729 0.148 0.928 0.800 0.232

M
O
R
E
-
D
A
T
A Yalniz et al. [24]-a 0.813 0.726 0.029 0.958 0.911 0.217 0.976 0.943 0.328

Yalniz et al. [24]-b 0.838 0.774 0.008 0.970 0.936 0.073 0.984 0.962 0.125

Mahajan et al. [25] 0.735 0.507 0.104 0.914 0.748 0.357 0.949 0.826 0.491

Table 1: Evaluation of the ImageNet-Patch dataset using the chosen metrics, as described
in Section 4.2. On the rows, we list the 15 models used for testing, divided into the isolated
groups. On the columns, we detail the clean accuracy, the robust accuracy and the success
rate of the adversarial patch, repeated for top-1,5, and 10 accuracy.

optimized patches, the relation between robust and clean accuracy slightly

diverges from a linear regression model, as the distance of the points from

the interpolating line increases. Such effect is also enforced by the Pearson

correlation computed and reported on top of each plot, since it is lower when

using adversarial patches.

Among the many reasons behind this effect, we focus on the ADV-ROBUST

group, as it lays outside the confidence level, and towards the bisector of
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ENSEMBLE STANDARD ADV-ROBUST AUGMENTATION MORE-DATA

Figure 6: Results of our large-scale analysis on 127 publicly-released models. Top row :
top-1 (left), top-5 (center), and top-10 (right) clean accuracy vs robust accuracy. Bottom
row : top-1 (left), top-5 (center), and top-10 (right) robust accuracy vs attack success rate.
The Pearson correlation coefficient ρ and the p-value are also reported for each plot.

the plot, lowering for sure the computed correlation. Intuitively, models that

are located above the regression line can be considered more robust when

compared with the others, since their robust accuracy is closer to their clean

accuracy, i.e. closer to the bisector line. However, even if their robust training

is aiding their performances against patch attacks, their robustness is not as

evident as the one obtained when considering their original threat model.

Evaluating adversarial robustness on limited threat models is therefore not
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ENSEMBLE STANDARD ADV-ROBUST AUGMENTATION MORE-DATA

Figure 7: Clean vs robust accuracy for adversarial (top row) and random (bottom row)
patches. The Pearson correlation coefficient ρ and the p-value are also reported for each
plot. The dashed grey line and shaded area show a robust regression model fitted on the
data along with the 95% confidence intervals. The results highlight the effectiveness of
our pre-optimized strategy against choosing patches at random.

sufficient to have a clear idea of what impact attacks can have on these

models. Our dataset can help by providing additional analysis of robustness

against patch attacks to assess for a more general and complete evaluation.

Lastly, we notice that the MORE-DATA group seems to present a similar

effect by distantiating from the regression line, but with a much lower mag-

nitude. The effect is less evident because these models start from a higher

clean accuracy, which then leads to a naturally higher robust accuracy.
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True label: joystick
Target: electric guitar

True label: sandal
Target: banana

True label: lemon
Target: cellular telephone

Figure 8: Examples of adversarial patches from our dataset applied to objects in the
physical world. In each photo we show the original and predicted label.

4.5. Effectiveness in the physical world

We now show how our pre-computed patches are effective to assess the

robustness of object classification models deployed in the physical world.

To this end, we select 3 objects, i.e., a joystick, a sandal, and a lemon,

and we acquire photos of them by applying our 10 patches with 3 different

roto-translations, hence composing a dataset of 90 images. We show some

examples of applied patches in Figure 8. We then select the same models used

in Table 1 (from the STANDARD, ADV-ROBUST, AUGMENTATION, and MORE-DATA

groups), and report their robust accuracy against such attacks in Table 2.

Even if the effectiveness of the printed patches is lower than their digital

counterparts, their efficacy is aligned with the results reported in Table 1.

Such performance drop could be caused by the printing quality of the patches,

or also by some slight environmental light exposition, that could have altered

the colors during the acquisition phase [6]. The ENSEMBLE group models are

21



top-1 top-5 top-10

Model C1 R1 S1 C5 R5 S5 C10 R10 S10

E
N
S
E
M
B
L
E AlexNet [11] 0.322 0.111 0.100 0.489 0.233 0.222 0.667 0.267 0.333

ResNet18 [12] 0.578 0.289 0.233 0.933 0.478 0.556 0.967 0.544 0.733

SqueezeNet [13] 0.456 0.222 0.344 0.744 0.322 0.589 0.944 0.422 0.722

S
T
A
N
D
A
R
D GoogLeNet [14] 0.422 0.311 0.067 0.767 0.378 0.367 0.933 0.456 0.489

MobileNet [15] 0.789 0.344 0.022 0.989 0.556 0.122 0.989 0.656 0.222

Inception v3 [16] 0.722 0.133 0.156 0.867 0.389 0.389 0.944 0.522 0.444

A
D
V
-
R
O
B
U
S
T Engstrom et al. [18] 0.333 0.222 0.044 0.722 0.411 0.156 0.922 0.522 0.178

Salman et al. [17] 0.433 0.211 0.022 0.911 0.444 0.144 0.978 0.578 0.178

Wong et al. [19] 0.311 0.078 0.033 0.678 0.267 0.133 0.733 0.422 0.167

A
U
G
M
.

Zhang et al. [21] 0.344 0.067 0.122 0.444 0.200 0.222 0.667 0.233 0.344

Hendrycks et al [22] 0.833 0.322 0.100 0.967 0.467 0.344 1.000 0.678 0.444

Engstrom et al [23] 0.722 0.289 0.133 0.933 0.422 0.322 0.956 0.511 0.467

M
O
R
E
-
D
A
T
A Yalniz et al. [24]-a 0.944 0.811 0.000 1.000 0.944 0.178 1.000 0.989 0.311

Yalniz et al. [24]-b 1.000 1.000 0.000 1.000 1.000 0.011 1.000 1.000 0.067

Mahajan et al. [25] 0.733 0.389 0.067 0.922 0.678 0.289 0.967 0.800 0.356

Table 2: Evaluation results of the printed patches applied on the three selected objects
(joystick, sandal and lemon). On the rows, we list the 15 models used for testing, divided
into the isolated groups. On the columns, we detail the clean accuracy, the robust accuracy
and the success rate of the adversarial patch, repeated for top-1,5, and 10 accuracy.

affected more by the application of our patches, as their gradients were used

to optimize the attacks, while they show little-to-none efficacy against the

ADV-ROBUST group, as expected. Moreover, both the top-5 and top-10 success

rates for the testing groups match the tests conducted in the digital domain,

confirming the effectiveness of the given patches also in the physical world.
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4.6. Discussion

We briefly summarize here the results of our analysis, based on our

ImageNet-Patch dataset to benchmark machine-learning models. We observe

that data augmentation techniques do not generally improve robustness to

adversarial patches. Moreover, we argue that real progress in robustness

should be observed as a general property against different adversarial at-

tacks, and not only against one specific perturbation model with a given

budget (e.g., ℓ∞-norm perturbations with maximum size of 8/255). Con-

sidering defenses that work against one specific perturbation model may be

too myopic and hinder sufficient progress in this area. We are not claiming

that work done on defenses for adversarial attacks so far is useless. Con-

versely, there has been great work and progress in this area, but it seems

now that defenses are becoming too specific to current benchmarks and fail

to generalize against slightly-different perturbation models. To overcome this

issue, we suggest to test the proposed defenses on a wider set of robustness

benchmarks, rather than over-specializing them on a specific scenario, and

we do believe that our ImageNet-Patch benchmark dataset provides a useful

contribution in this direction.

5. Related Work

We now discuss relevant work related to the optimization of adversarial

patches, and to the proposal of similar benchmark datasets.
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Attack Cross-model Transfer Targeted Untargeted Transformations

Sharif et al. [7] ✗ ✗ ✓ ✓ rot

Brown et al. [5] ✓ ✓ ✓ ✗ loc, scl, rot
LaVAN [9] ✗ ✗ ✓ ✗ loc

PS-GAN [26] ✗ ✓ ✗ ✓ loc

DT-Patch [27] ✗ ✗ ✓ ✗ ✗

PatchAttack [28] - ✓ ✓ ✓ loc, scl
IAPA [29] ✗ ✓ ✓ ✓ ✗

Lennon et al. [30] ✗ ✓ ✓ ✗ loc, scl, rot
Xiao et al. [31] - ✓ ✓ ✓ various

Ye et al. [32] ✓ ✓ ✓ ✗ loc, scl, rot
Liu et al. [33] ✗ ✓ ✗ ✓ loc, scl, rot
GDPA [34] ✗ ✗ ✓ ✓ loc

Ours (based on [5]) ✓ ✓ ✓ ✓ loc, rot

Table 3: Patch attacks, compared based on their main features. loc refers to the location
of the patch in the image, rot refers to rotation, scl refers to scale variations, various
include several image transformations (see [31] for more details).

5.1. Patch Attacks

The first physical attack against deep neural networks was proposed

by [7], by developing an algorithm for printing adversarial eyeglass frames

able to evade a face recognition system. Brown et al. [5] introduced the

first universal patch attack that focuses on creating a physical perturbation.

Such is obtained by optimizing patches on an ensemble of models to achieve

targeted misclassification when applied to different input images with dif-

ferent transformations. The LaVAN attack, proposed by Karmon et al. [9],

attempts to achieve the same goal of Brown et al. by also reducing the patch

size by placing it in regions of the target image where there are no other ob-

jects. The PS-GAN attack, proposed by Liu et al. [26], addresses the problem

of minimizing the perceptual sensitivity of the patches by enforcing visual

fidelity while achieving the same misclassification objective. The DT-Patch

24



attack, proposed by Benz et al. [27], focuses on finding universal patches that

only redirect the output of some given classes to different target labels, while

retaining normal functioning of the model on the other classes. PatchAttack,

proposed by Yang et al. [28], leverages reinforcement learning for selecting

the optimal patch position and texture to use for perturbing the input im-

age for targeted or untargeted misclassification, in a black-box setting. The

Inconspicuous Adversarial Patch Attack (IAPA), proposed by Bai et al. [29],

generates difficult-to-detect adversarial patches with one single image by us-

ing generators and discriminators. Lennon et al. [30] analyze the robustness

of adversarial patches and their invariance to 3D poses. Xiao et al. [31] craft

transferable patches using a generative model to fool black-box face recog-

nition systems. They use the same transformations as [35], but unlike other

attacks, they apply them to the input image with the patch attached, and

not just on the patch. Ye et al. [32] study the specific application of patch

attacks on traffic sign recognition and use an ensemble of models to improve

the attack success rate. Liu et al. [33] propose a universal adversarial patch

attack that produces patches with strong generalization ability leveraging the

texture and semantic bias of the target models to speed up the optimization

of the adversarial perturbation. The Generative Dynamic Patch Attack

(GDPA), proposed by Li et al. [34], generates the patch pattern and location

for each input image simultaneously, reducing the runtime of the attack and

making it hence a good candidate to use for adversarial training.

We summarize in Table 3 these attacks, highlighting the main proper-
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ties and comparing them with the attack we used to create the adversarial

patches. In particular, in the Cross-model column we report the capability of

an attack to be performed against multiple models (for black-box attacks we

omit this information); in the Transfer column the proved transferability of

patches, if reported in each work (thus it is still possible that an attack could

produce transferable patches even if not tested on this setting); in Targeted

and Untargeted columns the type of misclassification that patches can pro-

duce; in Transformations column the transformations applied to the patch

during the optimization process (if any), which can increase the robustness

of the patches with respect to them at test time.

In this work, we leverage the model-ensemble attack proposed by Brown

et al. [5] to create adversarial patches that are robust to affine transformations

and that can be applied to different source images to cause misclassification

on different target models. From that, we publish a dataset that favors fast

robustness evaluation to patch attacks without requiring costly steps for the

optimization of the patches, both for the digital and physical world.

5.2. Benchmarks for Robustness Evaluations

Previous work proposed datasets for benchmarking adversarial robust-

ness. The APRICOT dataset, proposed by Braunegg et al. [36], contains

1, 000 annotated photographs of printed adversarial patches targeting ob-

ject detection systems, i.e. producing targeted detections. The images are

collected in public locations and present different variations in position, dis-
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tance, lighting conditions, and viewing angle. However, even if ImageNet-

Patch and APRICOT are similar in spirit, our dataset is designed to test the

robustness of image classifiers and not object detectors. These two problems

are very different, and also the techniques used to optimize patches drastically

change from one domain to the other. ImageNet-C and ImageNet-P, pro-

posed by Hendrycks et al. [37], are two datasets proposed to benchmark neu-

ral network robustness to image corruptions and perturbations, respectively.

ImageNet-C perturbs images from the ImageNet dataset with a set of 75

algorithmically-generated visual corruptions, including noise, blur, weather,

and digital categories, with different strengths. ImageNet-P perturbs images

again from the ImageNet dataset and contains a sequence of subtle pertur-

bations that slowly perturb the image to assess the stability of the networks’

prediction on increasing amounts of perturbations.

Differently from these works, we propose a dataset that can be used to

benchmark the robustness of image classifiers to adversarial patch attacks,

whose aim is not restricted to being a source used at training time to improve

robustness, or a collection of environmental corruptions.

The research community has recently created benchmarks for robustness

evaluation of machine-learning models against different attacks. Robust-

Bench, proposed by Croce et al. [10], provides a standard evaluation pro-

tocol for adversarial perturbations and image corruptions. The models are

then ranked in a leaderboard and downloadable via a dedicated model zoo.

RobustART, on the other hand, proposed by Tanget al. [38], analyzes the
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relationship between robustness and different settings including model ar-

chitectures and training techniques. Our work is the first one to provide a

dataset to evaluate the robustness of models against adversarial patch at-

tacks, which can be a nice complement to RobustBench.

6. Conclusions, Limitations, and Future Work

We propose the ImageNet-Patch dataset, a collection of pre-optimized

adversarial patches that can be used to compute an approximate-yet-fast ro-

bustness evaluation of machine-learning models against patch attacks. This

dataset is constructed by optimizing squared blocks of contiguous pixels per-

turbed with affine transformations to mislead an ensemble of differentiable

models, forcing the optimization algorithm to produce patches that can trans-

fer across models, gaining cross-model effectiveness. Finally, these adversarial

patches are attached to images sampled from the ImageNet dataset, compos-

ing a benchmark dataset of 50,000 images. The latter is used to make an

initial robustness evaluation of a selected pool of both standard-trained and

robust-trained models, disjointed from the ensemble used to optimize the

patch, showing that our methodology is already able to decrease their per-

formances with very few computations needed. We also test the effectiveness

of our adversarial patches when printed and applied to real-world objects,

successfully exhibiting comparable results of their digital counterparts. Both

results highlight the need of considering a wider scope when evaluating ad-

versarial robustness, since the latter should be a general property and not
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customized on single strategies. Hence, our dataset can be used to bridge

this gap, and to rapidly benchmark the adversarial robustness of machine-

learning models for image classification against patch attacks.

Limitations. While our methodology is efficient, it only provides an approx-

imated evaluation of adversarial robustness, which can be computed more ac-

curately by performing adversarial attacks against the target model, instead

of using transfer attacks. Hence, our analysis serves as a first preliminary

robustness evaluation, to highlight the most promising defensive strategies.

Moreover, we only release patches that target 10 different classes, and this

number could be extended to target all the 1000 classes of the ImageNet

dataset. Lastly, while our methodology only considered the attack proposed

by Brown et al. [5] to optimize the adversarial patches, it is straightforward

to extend our approach and benchmark dataset to also encompass novel and

more powerful attacks.

Future work. We envision the use of our ImageNet-Patch dataset as a

benchmark for machine-learning models, which may be added or used in

conjunction with RobustBench. We also argue that the proposed method-

ology is general enough to encompass novel, different patch attacks (e.g.,

with improved transferability properties [39, 40]) and image datasets (e.g.,

MNIST, CIFAR10), thereby easing the creation of novel benchmarks to eval-

uate robustness against adversarial patches.
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