This paper discusses online algorithms for inverse dynamics modeling in robotics. Several model classes, including rigid body dynamics models, data-driven models and semiparametric models (which are combination of the previous two classes), are placed in a common framework. While model classes used in the literature typically exploit joint velocities and accelerations, which needs to be approximated resorting to numerical differentiation schemes, in this paper, a new 'derivative-free' (DF) framework is proposed, which does not require this preprocessing step. An extensive experimental study with real data from the right arm of the iCub robot is presented, comparing different model classes and estimation procedures, showing that the proposed DF methods outperform existing methodologies.
Derivative-free online learning of inverse dynamics models
Raffaello Camoriano;Silvio Traversaro;Alessandro Chiuso
2019-01-01
Abstract
This paper discusses online algorithms for inverse dynamics modeling in robotics. Several model classes, including rigid body dynamics models, data-driven models and semiparametric models (which are combination of the previous two classes), are placed in a common framework. While model classes used in the literature typically exploit joint velocities and accelerations, which needs to be approximated resorting to numerical differentiation schemes, in this paper, a new 'derivative-free' (DF) framework is proposed, which does not require this preprocessing step. An extensive experimental study with real data from the right arm of the iCub robot is presented, comparing different model classes and estimation procedures, showing that the proposed DF methods outperform existing methodologies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.