Recent scientific results show that audio feedback associated with body movements can be fundamental during the development to learn new spatial concepts [1], [2]. Within the weDraw project [3], [4], we have investigated how this link can be useful to learn mathematical concepts. Here we present a study investigating how mathematical skills changes after multisensory training based on human-computer interaction (RobotAngle and BodyFraction activities). We show that embodied angle and fractions exploration associated with audio and visual feedback can be used in typical children to improve cognition of spatial mathematical concepts. We finally present the exploitation of our results: an online, optimized version of one of the tested activity to be used at school. The training result suggests that audio and visual feedback associated with body movements is informative for spatial learning and reinforces the idea that spatial representation development is based on sensory-motor interactions.

Embodied multisensory training for learning in primary school children

Gori M.;Volpe G.;Cappagli G.;Volta E.;
2021-01-01

Abstract

Recent scientific results show that audio feedback associated with body movements can be fundamental during the development to learn new spatial concepts [1], [2]. Within the weDraw project [3], [4], we have investigated how this link can be useful to learn mathematical concepts. Here we present a study investigating how mathematical skills changes after multisensory training based on human-computer interaction (RobotAngle and BodyFraction activities). We show that embodied angle and fractions exploration associated with audio and visual feedback can be used in typical children to improve cognition of spatial mathematical concepts. We finally present the exploitation of our results: an online, optimized version of one of the tested activity to be used at school. The training result suggests that audio and visual feedback associated with body movements is informative for spatial learning and reinforces the idea that spatial representation development is based on sensory-motor interactions.
File in questo prodotto:
File Dimensione Formato  
2021_conferences_icdl_1.pdf

accesso chiuso

Descrizione: Contributo in atti di convegno
Tipologia: Documento in Post-print
Dimensione 582.82 kB
Formato Adobe PDF
582.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1086450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact