This research proposes a unified guidance and control framework for Autonomous Underwater Vehicles (AUVs) based on the task priority control approach, incorporating various behaviors such as path following, terrain following, obstacle avoidance, as well as homing and docking to stationary and moving stations. The integration of homing and docking maneuvers into the task priority framework is thus a novel contribution of this paper. This integration allows, for example, to execute homing maneuvers close to uneven seafloor or obstacles, ensuring the safety of the AUV, as safety tasks can be given the highest priority. Furthermore, another contribution shown in the paper is that the proposed approach tackles a wide range of scenarios without ad hoc solutions. Indeed, the proposed approach is well suited for both the emerging trend of resident AUVs, which stay underwater for a long period inside garage stations, exiting to perform inspection and maintenance missions and homing back to them, and for AUVs that are required to dock to moving stations such as surface vehicles, or towed docking stations. The proposed techniques are studied in a simulation setting, taking into account the rich number of aforementioned scenarios.

A Unifying Task Priority Approach for Autonomous Underwater Vehicles Integrating Homing and Docking Maneuvers

Thomas C.;Simetti E.;Casalino G.
2021-01-01

Abstract

This research proposes a unified guidance and control framework for Autonomous Underwater Vehicles (AUVs) based on the task priority control approach, incorporating various behaviors such as path following, terrain following, obstacle avoidance, as well as homing and docking to stationary and moving stations. The integration of homing and docking maneuvers into the task priority framework is thus a novel contribution of this paper. This integration allows, for example, to execute homing maneuvers close to uneven seafloor or obstacles, ensuring the safety of the AUV, as safety tasks can be given the highest priority. Furthermore, another contribution shown in the paper is that the proposed approach tackles a wide range of scenarios without ad hoc solutions. Indeed, the proposed approach is well suited for both the emerging trend of resident AUVs, which stay underwater for a long period inside garage stations, exiting to perform inspection and maintenance missions and homing back to them, and for AUVs that are required to dock to moving stations such as surface vehicles, or towed docking stations. The proposed techniques are studied in a simulation setting, taking into account the rich number of aforementioned scenarios.
File in questo prodotto:
File Dimensione Formato  
jmse-09-00162-v3.pdf

accesso aperto

Descrizione: Main article
Tipologia: Documento in versione editoriale
Dimensione 13.42 MB
Formato Adobe PDF
13.42 MB Adobe PDF Visualizza/Apri
jmse-09-00162-v3_compresso.pdf

accesso aperto

Descrizione: File compresso per invio Login MIUR
Tipologia: Documento in versione editoriale
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1076558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact