The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.

MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation

Oliveri P.;
2022

Abstract

The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.
File in questo prodotto:
File Dimensione Formato  
Biagini_FreeRadBiolMed_2022_withSM.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1070108
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact