This paper presents a novel hardware architecture of the Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks (NN) for the Single Value Decomposition (SVD) computation. The proposed NN achieves a comparable Mean Squared Error and Cosine Similarity to the widely used one-sided Jacobi algorithm. When implemented on an FPGA, the NN offers 324times faster computations than the one-sided Jacobi with reductions up to 58% and 67% in terms of hardware resources and power consumption respectively. When validated on a touch modality classification problem, the NN-based TSVM implementation has achieved a real-time operation while consuming about 88% less energy per classification than the Jacobi-based TSVM with an accuracy loss of at most 3%. Such results offer the ability to deploy intelligence on resource-limited platform for energy-constrained applications.
A Shallow Neural Network for Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing
Younes H.;Ibrahim A.;Valle M.
2021-01-01
Abstract
This paper presents a novel hardware architecture of the Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks (NN) for the Single Value Decomposition (SVD) computation. The proposed NN achieves a comparable Mean Squared Error and Cosine Similarity to the widely used one-sided Jacobi algorithm. When implemented on an FPGA, the NN offers 324times faster computations than the one-sided Jacobi with reductions up to 58% and 67% in terms of hardware resources and power consumption respectively. When validated on a touch modality classification problem, the NN-based TSVM implementation has achieved a real-time operation while consuming about 88% less energy per classification than the Jacobi-based TSVM with an accuracy loss of at most 3%. Such results offer the ability to deploy intelligence on resource-limited platform for energy-constrained applications.File | Dimensione | Formato | |
---|---|---|---|
41403807_File000000_1011375421.pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in versione editoriale
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.