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Abstract—This paper presents a novel hardware architecture
and implementation of a Machine Learning (ML) method based
on tensorial kernel approach dealing with multidimensional
tensors. The architecture adopts shallow Neural Networks (NN)
to compute the Singular Value Decomposition (SVD) of tensorial
inputs. When implemented on an FPGA, the NN offers 324×
faster computations with reductions up to 58% and 67% in terms
of hardware resources and power consumption respectively.
When validated on a touch modality classification problem, the
NN-based ML implementation has achieved a real-time operation
while consuming about 88% less energy per classification than
existing similar solutions. Such results offer the ability to deploy
intelligence on resource-limited platform for energy-constrained
applications.

Index Terms—Embedded machine learning, real-time, ten-
sorial kernel, tactile sensors, neural networks, singular value
decomposition, FPGA.

I. INTRODUCTION

TENSOR based learning techniques permit the effective
exploitation of the structure of data used in various fields

such vision (e.g. image recognition), neuroscience (e.g. MRI
data), etc. Authors in [1] proposed a tensorial kernel that
could be used for supervised tensor-based learning models
while utilizing the structural information embodied in the data.
When used with Support Vector Machine (SVM) algorithm,
the tensorial kernel leads to better classification accuracy than
the Gaussian-Radial Basis Function (RBF) and linear kernels
in an image recognition task.

Gastaldo et. al have extended the tensorial kernel approach
for tactile data processing in [2]. This approach has been
adopted since it preserves the inherent tensorial structure of
the data collected by tactile sensors. As an end result, the
tensorial-based SVM achieves higher accuracy in classifying
touch modalities compared to the Regularized Least Square
(RLS) algorithm. In [3], the first FPGA implementation of the
Support Vector Machine (SVM) algorithm based on tensorial
kernel has been presented. Specifically, two implementations
were provided: Cascaded and Parallel. The former failed to
ensure real-time classification of touch (i.e in less than 400ms
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[4]), and the latter reported a relatively large hardware area
and high power consumption of 1.14W. Such results were not
acceptable for the application with limited power budget and
area constraints [5].

In this paper, our main goal is to provide a new architecture
and hardware implementation of the tensorial SVM (TSVM)
aiming at reducing the hardware complexity and power con-
sumption while keeping real-time operation. For this purpose,
we analyzed the complexity of the tensorial SVM architecture
to pin-out most computationally complex and demanding
blocks. Fig. 1 illustrates the estimated number of operations
required in each step of the tensorial SVM algorithm, where
m and n are the dimensions of the unfolded matrix, Nc,
Nt, and Nsv are the number of classes to be discriminated,
the number of training tensors, and the number of support
vectors respectively. It is evident that the Singular Value
Decomposition (SVD) computation corresponds to about 96%
of the overall algorithm. In [3], the one-sided Jacobi algo-
rithm has been adopted for finding the singular vectors. Such
algorithm involves a high number of arithmetic operations
and requires several iterations to converge [6]. Thus, the
main focus of the proposed new architecture is to find an
alternative algorithm for SVD computation. This alternative
should impose complexity reductions without affecting the
classification accuracy of the tensorial SVM.

A Neural Network (NN) is one of the candidates for the
SVD computation. The idea first surfaced in 1991 when
Samardzija et. al proposed an artificial continuous time neural
network to estimate the eignevectors and eigenvalues [7]. In
[8], the convergence and computational complexity through
computer simulations of such network are assessed. Another
neural network has been presented in [9]. The network is

Fig. 1. Computational Complexity of the Tensorial SVM algorithm
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characterized by an order n-Ordinary Differential Equations
(ODEs) leading to reduced dimensionality. Such neural net-
work has evolved to further applications such as Principle
Component Analysis (PCA) [10].

Triggered by the performance of neural networks in many
domains [11] and the continuous quest for efficient designs
specifically for resource-limited applications [12], a neural
network based tensorial SVM architecture is proposed. The
main contributions of this paper are summarized as follows:
• It presents a novel architecture for SVD computation

using shallow neural networks. The architecture achieves
324× speedup with 58% and 67% reductions in the
required hardware resources and power consumption re-
spectively compared to the traditional one-sided Jacobi
algorithm. Such reductions are obtained while providing a
comparable performance in terms of Mean Squared Error
(MSE) and Cosine Similarity (CS) metrics. Moreover, the
proposed architecture is adequate for implementations on
resource-limited platforms (e.g. Zynqberry [13]).

• It presents the first hardware implementation of a neural
network based SVM featuring multidimensional tensorial
inputs.

• It demonstrates the feasibility of the implemented system
for real-time touch modality classification while consum-
ing 6.28 mJ. The proposed cascade architecture achieves
131× classification speedup with a 39% and 50% re-
sources and power reductions respectively compared to
similar stat-of-the-art solution [3].

• It provides scalability assessment of the proposed SVD
architecture. When used instead of the one-sided Jacobi
computations in the tensorial SVM architecture, the neu-
ral network based SVM reports only 3% increase in
the required FFs compared to 29% when the number of
training tensors is doubled.

The rest of the paper is organized as follows: Section II
presents an overview of the tensorial SVM for touch modality
classification. Section III provides a review on the efficient
existing SVD algorithms and their hardware implementations.
It also reports the complexity of the proposed architecture
compared to existing solutions. Section IV details the process
of designing a neural network for SVD and its performance
when tested on a tactile dataset. Section V provides the FPGA
implementation and verification of the tensorial SVM based
on SVD computation via shallow neural networks. Section
VI presents a scalability study of the proposed architecture
in terms of hardware resources and time latency. Section VII
concludes the paper and illustrates on some observations.

II. SVM CLASSIFICATION BASED ON TENSORIAL KERNEL

A. Overview

A theoretical approach that extends kernel methods to tensor
data has been presented in [14]. The framework allows the
classification of an input tensor using SVM in 4 main steps:
• Tensor Unfolding: A tensor φ(I1×I2×I3) is transformed

into three matrices X1(I1 × I2I3), X2(I2 × I1I3) and
X3(I3 × I1I2).

• SVD Computation: The unfolded matrices are sym-
metrized into square matrices that can be written in the
form:

X1 = USV T (1)

where U and V T contain the left and right singular
vectors respectively, and S is the diagonal matrix storing
the singular values σi of X1.

• Kernel Computation: The tensorial kernel extended from
the Gaussian kernel is computed using the function:

K(x, y) =

z∏
1

kz(x, y) (2)

where kz is the kernel factor defined as:

k(x, y) = exp(
−1

2σ2
(In − trace(ZTZ))) (3)

where Z = V T
x Vy , Vx and Vy represent the singular vec-

tors of the unfolded matrix obtained during the inference
and training phase respectively, and trace represents the
sum of diagonal elements.

• Classification: Applying the SVM classification function
expressed as:

ŷ = fSVM (x) =

n∑
i

βiK(xi, x) + b (4)

where ŷ is the predicted label of input tensor x, n is
the number of training tensors, βi are the coefficients
obtained during training, and b is the bias.

B. Touch Modalities Classification

The tensorial SVM has been initially presented as an
effective algorithm for touch modality classification in [14]. In
this paper, three binary classification problems are used to test
the accuracy of the proposed neural network based tensorial
SVM. Specifically, the problems are:
• Problem A: ”brushing a paintbrush” versus ”rolling a

washer”
• Problem B: ”brushing a paintbrush” versus ”sliding the

finger”
• Problem C: ”sliding the finger” versus ”rolling a washer”

These modalities are derived from a tactile dataset that has
been collected by 70 participants. Each participant performed
the modality on both the horizontal and vertical axes of a
4 × 4 tactile sensor for a duration of 10 seconds. Thus each
touch modality is represented by a tensor φ(4× 4× 30, 000).
However, such tensor size is reduced into φ(4×4×20) where
20 is the obtained number of samples using the data pre-
processing algorithm (Algorithm 1) reported in section IV.

III. SVD ALGORITHMS AND IMPLEMENTATIONS

A. Literature Review

Singular value decomposition can be computed numerically
through several methods such as: the Jacobi method, the
QR method, and the one-sided Hestenes method [15]. For
parallel implementations, computing the SVD using the Jacobi
method is superior to other methods in terms of complexity
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and execution time [15]. Brent et. al have shown that two-
dimensional systolic array could be used for implementing the
Jacobi method [16]. In [17], the authors have presented various
realization for the Jacobi SVD computation using Coordinate
Rotation Digital Computer (CORDIC) [18]. The latter is
adopted in majority of the existing hardware implementations
of the Jacobi SVD method. For small matrix dimensions,
an efficient implementation of SVD for the use in Multiple
Input Multiple Output (MIMO) precoding and real-time signal
processing has been presented in [19]. The implementation is
based on CORDIC processors. For an arbitrary m×n matrix,
Ibrahim et. al have presented an FPGA implementation with
fixed-point arithmetic [20]. The implementation managed to
compute the SVD of an 32×127 matrix in 13 ms while occu-
pying 20% and 67% slice registers and LUTs respectively on a
Virtex-6 FPGA. A fast and efficient FPGA implementation for
computing the singular and eigen value decomposition based
on a simplified CORDIC-like algorithm is presented in [21].
The implementation uses fixed-point arithmetic for sequential
and parallel operations leading about 3× faster computation in
an image denoising application compared to computations via
an Intel CPU based PC. The authors in [22] used High-Level
Synthesis (HLS) to model the one-sided Jacobi SVD compu-
tation on a Zedboard development board. For a 16×16 matrix,
SVD computation takes around 1.1 seconds with a power
consumption of 1.38W. Using CMOS 28-nm technology, Deng
et.al proposed a hardware architecture for tensor SVD [23].
Compared with real-world CPU-based implementations, the
architecture provides an average of 14× speed on various
workloads.

Targeting the TSVM architecture in [3] where the one-sided
Jacobi is identified as a performance bottleneck, the exist-
ing alternative implementations for SVD computation share
several common challenges: (1) they operate only on square
matrices. Thus, if the input matrix is rectangular, an additional
complexity is added due to matrix symmetrization [23]. (2)
if the implementation uses floating-point representation, the
complexity is relatively high even for small matrix dimensions
[24], and (3) depending on the required output precision,
the algorithm might require additional iterations to converge
[6]. Recently, a scalable SVD engine on FPGA has been
introduced in [25] targeting these challenges. The proposed
engine managed to compute the SVD of rectangular matrices
using floating-point arithmetic. However, the implementation
results show that a large number of DSPs is required for
several matrix dimensions which has a direct impact on the
power consumption of hardware implementations. Another
noticeable observation is that the authors compared the SVD
engine only to CPU-based SVD computations. In this paper,
a new architecture for SVD computation based on shallow
neural networks is proposed. The architecture offers the ability
to operate on rectangular matrices (thus symmetrization is
not needed, see Fig. 2) and utilizes floating-point arithmetic.
As for convergence, the neural network training is usually
performed offline on a high-end computing device. Thus, a
network could be trained several times for any given amount
of time to achieve top notch performance.

Fig. 2. SVD Computation using: (a) one-sided Jacobi, (b) Neural Network

B. Computational Complexity

In this section, we compare the complexity of the one-sided
Jacobi algorithm with that of a shallow neural network in terms
of the total number of operations. Consider a shallow neural
network of one hidden layer of size H and an output layer of
size O. For an input Am×n, the outputs of the hidden layer
Yh and the output layer YO are expressed respectively as:

Yh = fh(Wh.A+ bh) (5)

YO = fO(WO.Yh + bO) (6)

where W , b, and f represent the weight, bias, and activation
function respectively. The output of each layer consists of
matrix multiplication, addition, and activation operations. The
number of operations for matrix multiplication and addition is
expressed as:

Nh = H(2m× n− 1) +H = 2H(m× n) (7)

Assuming that the activation function requires NAct opera-
tions, the total number of operations in the hidden layers is
expressed as:

Nh = 2H(m× n) +NActh (8)

The same can be applied to the output layer, thus the number
of required operations is:

NO = 2H ×O +NActO (9)

Finally, the number of operations for the whole network could
be expressed as:

N = Nh +NO = 2H(m× n+O) +NActh +NActO (10)

To estimate N , suppose there exists an upper bound T such
that N ≤ T . T is an upper bound when both NActh and
NActO correspond to the most complex activation function i.e.
the tangent hyperbolic function (tanh). The latter is expressed
as:

f(z) =
ez − e−z

ez + e−z
(11)

To find the number of operations required for the term ez ,
we referred to the function implementation in the IEEE-754
library in [26]. The implementation uses the Taylor expansion
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with an order 3 for floating-points, leading to a total of 16
operations. Thus the number of operations NActh = 35H .
Similarly, NActO = 35O. For the network to output the right
singular vectors V of an m× n matrix, the output layer size
O is equal to n2. This simplifies (10) to:

N <= (2H × n)(m+ n) + 35H + 35n2 (12)

Knowing that the number of operations for the one-sided
Jacobi algorithm is (see Fig. 1):

Nj = 24m(n− 1)[n2(2n− 1) + n3 + 6] (13)

through simulations, the values of m, n, and H are varied to
compare (12) and (13). Fig. 3 plots the number of operations
Nj and N required to compute the SVD of a matrix using
one-sided Jacobi and a shallow neural network respectively.
Generally, the comparison results are in favor of the neural
network approach as shown in Fig. 3. The one-sided Jacobi
is superior for very small dimensions such as 2 × 2 for
H > 21. As the dimension starts to increase, the neural
network requires significantly less number of operations for
SVD computations. For instance, for (m,n) = (20, 16) and
(m,n) = (4, 80) (these dimensions are often used for tensorial
SVD implementations based on the one-sided Jacobi algorithm
[3], [27]), computing the right singular vectors V using a
shallow neural network requires less number of operations
than using the one-sided Jacobi (N < Nj) for all values of
H ≤ 70, 000 and H ≤ 800, 000 respectively. Such values of
H are very large even for the largest existing neural networks.

IV. SVD USING NEURAL NETWROKS

A. Network Structure

A tactile tensor φ(4×4×20) is unfolded into three matrices
M(4×80), N(4×80), and P (20×16). According to (1) each

matrix could be decomposed into:

M4×80 = U4×80 × Σ80×80 × V T
80×80 (14)

N4×80 = U4×80 × Σ80×80 × V T
80×80 (15)

P20×16 = U20×16 × Σ16×16 × V T
16×16 (16)

Authors in [14] and [28] reported that for tensor SVD, only
a small number of the columns of V is required to obtain
acceptable classification accuracy when embedded in SVM.
Using the three touch modality problems reported in section
II.B, the V matrices that resulted in the highest classification
accuracy are: V T

80×4, V T
80×4, and V T

16×2.
Fig. 4(a) shows the proposed shallow neural network that

is capable of computing the right singular vectors V . The
network is composed of three fully connected layers: an input
layer of size m× n, a hidden layer of size H , and an output
layer of size O = n × t, where t is the selected number of
columns from V . Thus, two neural networks are designed. one
with an 80× 4 output and the other with a 16× 2 output.

The neural networks share two activation functions (fh) and
(fO) defined as:

fh(z) = max(βz, z) (17)

fO(z) =


−1 z < −1

1 z > 1

z otherwise

(18)

The function fh shown in Fig. 4(c) is called leaky rectified
linear unit (LeakyReLU) where β is a small constant used to
keep negative values compared to the standard ReLU function.
It is adopted for the hidden layer to preserve the sign of the
neurons’ output with low computational complexity compared
to other activation functions (e.g. Sigmoid function). The

Fig. 3. Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural Network (N), (m,n) are the matirx dimension and H is the hidden layer
size.
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Fig. 4. Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer Neuron, (c) LeakyReLU Activation Function, (d) Output Layer Neuron,
(e) Approximate Hyperbolic Tangent Activation Function

function fO shown in Fig. 4(e) is called hard hyperbolic
tangent activation function [29]. It is used at the output layer
to output the elements vi of the V matrix in the range [−1, 1]
with a reduced computational complexity compared to the
hyperbolic tangent function.

B. Network Training and Tuning

The chosen network model is trained using floating-point
representation during both forward and backward propagation.
The network is trained to export the right singular vectors
V with the least possible error margin compared to exact
computations obtained via MATLAB. The proposed network is
a regression model that outputs singular vectors, for that the
performance is determined based on two metrics: (1) Mean
Squared Error (MSE) and (2) Cosine Similarity (CS). These
metrics are defined as:

MSE =
1

n

n∑
i=1

(Vi − V̂i)2 (19)

CS =
1

n

n∑
i=1

(
Vi.V̂i

||Vi|| × ||V̂i||
) (20)

where V is the matrix generated from the neural network
and V̂ is the one generated from applying the SVD using
MATLAB software. Thus, the training aims at finding a
network model that achieves the lowest MSE (i.e. the elements
vi of the V and V̂ matrices have similar values) and highest
CS (i.e. the vectors Vi of the V and V̂ matrices have similar
direction i.e CS tends to 1).

The proposed neural network is hand crafted and can be
customized. The training process is used to tune the network
structure (e.g. size of hidden layer H), parameters (e.g.
weights), and hyperparameters (e.g. learning rate). During
training, the weights and biases of the network are randomly
initialized, then updated using one of the below optimizers.
As for the hyperparameters, the following settings have been
tested:
• H = [10, 20, ..... 200]
• LeakyReLU β = [0.1, 0.01, 0.001]

• Learning rate = [0.1, 0.01, 0.001, ... 10−5]
• Optimizer : [SGD, Adam, Adadelta, RMSprop]
• Batch size = [50, 100, 150]

The tactile dataset from [14] is used for training. However,
some modifications have been applied based on the following:
• Some participants recordings are noisy (see Fig. 5(a)),

thus their corresponding data has been removed from the
training dataset.

• Since no particular indications were given to the partic-
ipants in [14] about the pressure level, silent intervals
(i.e. voltage readings from sensor taxels equals to zero,
see Fig. 5(b) ) are observed in the recordings. These silent
intervals will not help the neural network to learn new
patterns and thus are removed. Specifically, all reading
outside the timing interval [3.5, 7] are omitted.

Algorithm 1 summarizes the pre-processing technique applied
to the dataset. The algorithm truncates each modality from 10s
to 3.5s resulting in a tensor T ′(4× 4× 10, 500). Afterwards,
subsampling is applied to obtain 20 readings (P = 20) from

Fig. 5. Touch Modality with: (a) Noisy Readings, (b) Silent Intervals
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the 10,500 resulting in a final tensor φ(4×4×20). After pre-
processing, 4480 matrices of dimensions 4× 80 and 20× 16
have been derived. Then, their corresponding V matrices are
generated using MATLAB. These matrices are divided into
80% for training, 10% for validation, and 10% for testing.

Algorithm 1: Pre-Processing Algorithm
Input: Tensor T of size (:,:,S),
Time Interval [a, b]
Sampling parameter P
Output: Sampled Tensor φ of size (:,:,P)
Let v1← a× S/10
Let v2← b× S/10
Let S′ ← v2− v1
Let T ′ be a Tensor of size (:,:,S’)
Let j = 0
for i←v1 to v2 do

T ′(:, :, j)← T (:, :, i)
j + +

Let k = 0
for i←0 to P do

φ(:, :, i)← (P/S′) ∗
∑S′/P+k

i=k T ′(:, :, i)
k+ = S′/P

C. Network Performance

The neural network is coded in Python using Tensorflow and
Keras libraries. Then, it is trained on an ASUS PC equipped

Fig. 6. Best Model Performance: (a) CS for V (80×4), (b) MSE for V (80×
4), (a) CS for V (16× 2), (b) MSE for V (16× 2)

TABLE I
BEST NEURAL NETWORK MODEL CHARACTERISTICS

Input Layer Size 20× 16 4× 80
Hidden Layer Size H 40 140

Output Layer Size 16× 2 80× 4
LeakyReLU β 0.01
Learning Rate 0.001

Batch Size 100 50
Epochs 400 1000

with an NVIDIA GTX 1650 graphics card with 4GB VRAM.
Fig. 6 shows the MSE and CS of the model with best achieved
performance. The latter is obtained using the characteristics
presented in Table I. one noticeable observation is that the size
of the hidden layer differs for the two input dimensions. This
is due to the fact that the network has to output 320 elements
(80 × 4) for the input dimension (4 × 80) compared to 32
elements (16 × 2) for the input dimension (20 × 16), which
justifies the longer training time required (higher number of
epochs). However, the training can be shortened into 250 and
100 epochs for output dimensions (80 × 4) and (16 × 2)
respectively.

The obtained performance is compared to that of computing
the SVD using the one-sided Jacobi algorithm based on the
architecture presented in [20]. According to the comparison
shown in Table II, the proposed neural network is capable of
computing the right singular vectors V while: (1) providing
low MSE and high CS during training, validation, and testing,
and (2) achieving comparable performance in terms of MSE
and CS to the exact computation using the one-sided Jacobi.
This is evident for both input dimensions 4× 80 and 20× 16.

V. HARDWARE IMPLEMENTATION AND VERIFICATION

This section presents the architecture and implementation
details of the two shallow neural networks and the overall
tensorial SVM. The latter is characterized by adopting these
networks for SVD computation. Each architecture is modeled
in C++, synthesized and implemented using Vivado HLS
2020.1 targeting Virtex-7 FPGA device operating at 100
MHz. For a credible power estimation, a post implementation
functional and timing simulation using Vivado is performed to
generate a Switching Activity Interchange File (SAIF). This
file is used to obtain a vector-based power estimation post-
routing.

For the rest of the paper, let NN1 and NN2 denote the
neural networks with input dimensions 4 × 80 and 20 × 16
respectively.

TABLE II
BEST MODEL PERFORMANCE COMPARED TO ONE-SIDED JACOBI

Output Layer Size 16× 2 80× 4
Training MSE 9.6× 10−4 4× 10−4

Training CS 0.993 0.985
Validation MSE 9.71× 10−4 4.22× 10−4

Validation CS 0.979 0.964
Testing MSE 9.8× 10−4 4.3× 10−4

Testing MSE based on [20] 9.21× 10−4 3.88× 10−4

Testing CS 0.966 0.952
Testing CS based on [20] ≈ 1 ≈ 1
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Fig. 7. Shallow Neural Network Architecture

A. FPGA Implementation of The Shallow Neural Network

Fig. 7 shows the architecture of the proposed shallow neural
network. For an input X of size L (one of the unfolded
matrices), it outputs the V matrix using sequential operations.
The outputs Yh and YO corresponds to the equations (5) and
(6), where fh and fO are the LeakyReLU and the hard tangent
hyperbolic activation functions respectively. The advantage of
such architecture is that it allows the use of network pruning
without any loss in performance (MSE/CS). Pruning is ap-
plied on matrix multiplication/addition by skipping operations
where W [i], b[i] ≤ 10−4. Table III shows the implementation
details for the SVD computation of a 4 × 4 × 20 tensor (i.e.
two NN1 to compute the SVD of the matrices M , N and
one NN2 to compute the SVD of the matrix P ) compared

TABLE III
IMPLEMENTATION RESULTS FOR TENSOR SVD COMPUTATIONS

Architecture Neural Network one-sided Jacobi
BRAM 102 88

DSP 32 105
FF 3714 29277

LUT 4905 43258
Time Latency 14.5 ms 4.7 s

Power Consumption 0.45W 1.35W

to the one-sided Jacobi based on the architecture presented
in [3]. The obtained results show that using neural networks
for SVD computations allows for a 324× speedup with an
average resources and power reductions of 58% and 67%
respectively. Another observation is that the neural network
architecture uses slightly more BRAMs. This is due to the
fact that the weight and bias matrices obtained from network
training are mapped into BRAMs and are not saved on an
external memory. Knowing that the Virtex-7 FPGA is used for
implementation to have a credible comparison with the state-
of-the-art, the obtained results show that the proposed neural
network for SVD computations is adequate to fit in a resource-
limited platform such as the Zynqberry. This is not possible
for the implementation of the one-sided Jacobi targeting large
matrix dimensions.

B. FPGA Implementation of The Neural Network based SVM

The neural networks NN1 and NN2 have been embedded
into the cascade architecture of the tensorial SVM presented in
[3]. The new NN-based TSVM architecture is presented in Fig.
8. The ”NN Memory” contains the weight and bias matrices of
the designed neural networks. The ”SVM Memory” contains
the singular vector training matrices. k1, k2, and k3 are the
three kernel factors obtained using (3).

Fig. 8. Neural Network based SVM Cascade Architecture
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TABLE IV
IMPLEMENTATION RESULTS FOR TENSORIAL SVM

Architecture NN-TSVM Jacobi-TSVM
BRAM 105 91

DSP 133 206
FF 11975 39047

LUT 20427 60100
Time Latency (ms) 36 4730

Energy per classification (mJ) 6.28 600

Table IV presents the implementation details of both the
NN-based TSVM and Jacobi-based SVM for Nt = 200
and Nc = 2. The energy per classification is computed as
E = P × T where P is the dynamic power consumption
and T is the time latency. The NN-based TSVM and Jacobi-
based TSVM recorded 0.9 W and 1.8 W respectively. Results
show that replacing the one-sided Jacobi algorithm with a
shallow neural network in the architecture of the TSVM leads
to faster classification time up to 131×. The NN-based TSVM
also requires 39% less average hardware resources with 50%
reduced power consumption This leads to 88% reductions in
the energy per classification factor. Two main observations
could be noted: the proposed NN-based TSVM (1) is capable
of real-time classification within 36 ms (time ≤ 400ms [4]),
(2) achieves real-time classification using cascaded architec-
ture, which was not possible using the Jacobi-based TSVM
as reported in [3]. The latter has been the main reason for
using the parallel architecture which has lead to high power
consumption.

C. Performance Verification

The NN-based TSVM implementation is verfied using the
three binary classification problems mentioned in Section II.B.
Table V shows the classification accuracy of different TSVM
architectures obtained by testing the implementation on a
dataset with 30 testing samples. Using neural networks to
compute the right singular vectors V provides approximate
values compared to the exact one-sided Jacobi. However, this
resulted in acceptable classification accuracy with only 3%
loss at the worst. This is evident in the comparable MSE/CS
of both architectures as presented in Table V.

VI. SCALABILITY OF NEURAL NETWORK BASED TSVM

In order to quantify the scalability of the NN-based TSVM
hardware complexity (resources and time latency), two cases
are assessed: (1) Scalability of the shallow neural network,
and (2) Scalability of the NN-based TSVM.

TABLE V
TOUCH MODALITY CLASSIFICATION USING DIFFERENT TSVM

ARCHITECTURES

Problem Classification Accuracy (%)
NN-TSVM Jacobi TSVM

A 90 90
B 83.3 86.6
C 80 83.3

A. Case 1:

The scalability of the neural network depends on the size
of each layer and the activation function in use. Through Fig.
3, an insight about the number of operations with respect
to the dimensions (i.e. m,n, and H) could be learned for
a certain application. To assess the scalability of the proposed
NN architecture, the output layer size is varied. Thus, we
designed and synthesized another two neural networks that
are capable of predicting the right singular vectors V without
truncation i.e output layer size O = n×n instead of O = n×t.
Fig. 9 presents the variation of the hardware resources and time
latency with respect to different hidden and output layer sizes.
The obtained results are recorded when the network achieved
a comparable MSE/CS to those reported in Table II. Analyzing
the graphs leads to several observations:
• The number of required FFs and LUTs is not uniform (see

Fig. 9(a),(b)). For instance, a similar number of FFs/LUTs
is required for networks with 140 and 400 neurons in the
hidden layer with the same output layer size. This could
be justified with the pruned cascaded architecture where
resources are shared for blocks with similar functionality.

• Memory requirements in terms of BRAMs starts to
increase once reached an output layer size of 80 × 80
with 400 neurons in the hidden layer (see Fig. 9(c)).
This is justified since the sizes of the weight and the
bias matrices increase in such cases, which requires more
storage memory.

• As shown in Fig. 9(d), regardless of the in-
put/hidden/output layer size of the network, the number
of DSPs is constant for the proposed architecture.

• The SVD computation time is relatively short until reach-
ing a high output layer size as shown in Fig. 9(e).
This is due to the longer operations required to perform
matrix multiplication/addition. However, according to the
comparison in Section III.B, this is faster than using the
one-sided Jacobi as long as H ≤ 70, 000 (H ≤ 800, 000)
for 20× 16 (4× 80) matrices.

The presented scalability assessment supports the use of
these networks for SVD computations as an efficient solution
especially for large matrix dimensions. Hence, the proposed
idea could be extended into other applications via a two-stage
approach as shown in Fig. 10:
• Stage 1: Unfold all the tensors φi in a dataset into

3 matrices. Then, find the V matrix for each of the
unfolded matrices using MATLAB or other software. For
the majority of the applications, a tensor has the same first
two dimensions (e.g. image, touch modality) hence, two
of the generated matrices will have the same dimension
hence can be grouped in a subset A. The remaining matrix
and its corresponding V matrix will be added to a subset
B.

• Stage 2: For each of the subsets, a shallow neural network
is to be designed. Start with random hyperparameters for
the initial model, then tune it using the generated subset to
reach the required MSE and CS. Once, the best model is
found, the weight and bias matrices could be exported and
used by the architecture in Fig. 7. For complexity tuning,
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Fig. 9. Scalability of Shallow Neural Network for varying the hidden/output layers size

Fig. 10. Stage 1:SVD Computation Approach via Shallow Neural Network

one could modify the pruning rule while preserving the
required performance metric imposed by the application.

B. Case 2:

To study the scalability of the proposed NN-based TSVM,
the number of training tensors has been varied between 200
and 900 and the implementation requirements are recorded
once the NN-based TSVM recorded a comparable accuracy to

the one presented in Table V. According to the results obtained
in Fig. 11:

• The required hardware resources (FFs, LUTs, BRAMs)
are slightly increased with the increase of the number
of training tensors. In case of BRAMs, a steeper slope is
observed which is due to the adoption of NN that requires
the storage of weight and bias matrices.

• The number of required DSPs is contsant for each size
of training tensors.
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Fig. 11. Scalability of NN-based TSVM for binary classification (Nc=2) and variable number of training tensors

• The proposed implementation is capable of real-time
classification even after 4.5× increase in the number of
training tensors.

Compared to the scalability study of the Jacobi-based
TSVM presented in [30], the NN-based TSVM complexity
shows a smaller slope for resource increase. For example, the
Jacobi-based TSVM requires 29% increase in the number of
FFs when the number of training tensors Nt is doubled. Using
the NN-based TSVM, only 3% increase in FFs is noticed. This
is mainly due to two reasons: (1) the neural network requires
significantly less resources than that of the one-sided Jacobi.
(2) the NN-based TSVM is a cascaded implementation i.e.
blocks are being re-used for implementation while increasing
the time latency. In [30], the architecture is based on parallel
computation due to their time constraint of real-time classi-
fication. The latter is assured using the proposed cascaded
architecture for all of training tensors sizes.

The importance of the presented work lies in the ability to
scale such architecture for processing larger number of sam-
ples while respecting the constraints of the application. When
scaled up, the designed NN-TSVM could enable intelligence
on smaller platforms (e.g. Zynqberry) if two issues are tackled.
The first issue is reducing the number of DSPs: this could be
achieved by using some approximate computing techniques
[31] or using LUTs-only custom core for matrix operations.
The second issue is reducing the number of BRAMs: this could
be achieved by further pruning of the weight/bias matrices as
long as the application performance is not highly affected.
Another method is to offload these matrices completely to
external DRAM. This imposes additional timing overhead.

However, authors in [32] have presented a strategy to over-
come such design challenge.

VII. CONCLUSION

This paper introduced a shallow neural network architecture
for the SVD computation of tensorial inputs. The architecture
achieves comparable performance to the state-of-art solutions
while imposing significant reductions in the implementation
requirements. Once embedded in the SVM architecture, the
NN-based TSVM is capable of delivering faster touch modal-
ity classification time up to 131× using a cascade architecture.
The latter is characterized by a 39% and 88% decrease in the
resource and energy per classification respectively compared to
the architecture presented in [3] targeting the same application.
Moreover, the proposed NN-based SVM obeys the constraints
imposed by the tactile data processing application e.g. small
size, real-time response, and low power consumption. The
encouraging scalability results present the first effective trial
for designing an efficient embedded processing unit for an e-
skin. A unit that is capable of delivering real-time performance
with relatively acceptable power consumption without the need
for high performance platform or multi-core devices.

ACKNOWLEDGEMENT

The authors acknowledge partial financial support from
TACTIle feedback enriched virtual interaction through virtual
realITY and beyond (TACTILITY) project: EU H2020, Topic
ICT-25-2018-2020, RIA, Proposal ID 856718.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 11

REFERENCES

[1] M. Signoretto, L. De Lathauwer, and J. A. Suykens, “A kernel-based
framework to tensorial data analysis,” Neural Networks, vol. 24, pp. 861–
874, Oct. 2011.

[2] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “A Tensor-
Based Pattern-Recognition Framework for the Interpretation of Touch
Modality in Artificial Skin Systems,” IEEE Sensors Journal, vol. 14,
pp. 2216–2225, July 2014.

[3] A. Ibrahim and M. Valle, “Real-Time Embedded Machine Learning for
Tensorial Tactile Data Processing,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, pp. 3897–3906, Nov. 2018.

[4] P. P. Lele, D. C. Sinclair, and G. Weddell, “The reaction time to touch,”
The Journal of Physiology, vol. 123, pp. 187–203, Jan. 1954.

[5] H. Fares, L. Seminara, A. Ibrahim, M. Franceschi, L. Pinna, M. Valle,
S. Dosen, and D. Farina, “Distributed Sensing and Stimulation Systems
for Sense of Touch Restoration in Prosthetics,” in 2017 New Generation
of CAS (NGCAS), (Genova, Italy), pp. 177–180, IEEE, Sept. 2017.

[6] B. Zhou, R. Brent, and M. Kahn, “Efficient one-sided Jacobi algorithms
for singular value decomposition and the symmetric eigenproblem,” in
Proceedings 1st International Conference on Algorithms and Architec-
tures for Parallel Processing, vol. 1, (Brisbane, Qld., Australia), pp. 256–
262, IEEE, 1995.

[7] N. Samardzija and R. L. Waterland, “A neural network for computing
eigenvectors and eigenvalues,” Biol. Cybern., vol. 65, pp. 211–214, Aug.
1991.

[8] Z. Yi, Y. Fu, and H. J. Tang, “Neural networks based approach for com-
puting eigenvectors and eigenvalues of symmetric matrix,” Computers
& Mathematics with Applications, vol. 47, pp. 1155–1164, Apr. 2004.

[9] Y. Tang and J. Li, “Another neural network based approach for com-
puting eigenvalues and eigenvectors of real skew-symmetric matrices,”
Computers & Mathematics with Applications, vol. 60, pp. 1385–1392,
Sept. 2010.

[10] J. Qiu, H. Wang, J. Lu, B. Zhang, and K.-L. Du, “Neural Network Im-
plementations for PCA and ItsExtensions,” ISRN Artificial Intelligence,
vol. 2012, pp. 1–19, 2012.

[11] Z. Li, W. Yang, S. Peng, and F. Liu, “A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects,” arXiv:2004.02806
[cs, eess], Apr. 2020. arXiv: 2004.02806.
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