We investigate an interpolation/extrapolation method that, given scattered observations of the Fourier transform, approximates its inverse. The interpolation algorithm takes advantage of modeling the available data via a shape-driven interpolation based on variably scaled Kernels (VSKs), whose implementation is here tailored for inverse problems. The so-constructed interpolants are used as inputs for a standard iterative inversion scheme. After providing theoretical results concerning the spectrum of the VSK collocation matrix, we test the method on astrophysical imaging benchmarks.

Feature augmentation for the inversion of the Fourier transform with limited data

Perracchione E.;Massone A. M.;Piana M.
2021

Abstract

We investigate an interpolation/extrapolation method that, given scattered observations of the Fourier transform, approximates its inverse. The interpolation algorithm takes advantage of modeling the available data via a shape-driven interpolation based on variably scaled Kernels (VSKs), whose implementation is here tailored for inverse problems. The so-constructed interpolants are used as inputs for a standard iterative inversion scheme. After providing theoretical results concerning the spectrum of the VSK collocation matrix, we test the method on astrophysical imaging benchmarks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/1065566
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact