We investigate an interpolation/extrapolation method that, given scattered observations of the Fourier transform, approximates its inverse. The interpolation algorithm takes advantage of modeling the available data via a shape-driven interpolation based on variably scaled Kernels (VSKs), whose implementation is here tailored for inverse problems. The so-constructed interpolants are used as inputs for a standard iterative inversion scheme. After providing theoretical results concerning the spectrum of the VSK collocation matrix, we test the method on astrophysical imaging benchmarks.
Feature augmentation for the inversion of the Fourier transform with limited data
Perracchione E.;Massone A. M.;Piana M.
2021-01-01
Abstract
We investigate an interpolation/extrapolation method that, given scattered observations of the Fourier transform, approximates its inverse. The interpolation algorithm takes advantage of modeling the available data via a shape-driven interpolation based on variably scaled Kernels (VSKs), whose implementation is here tailored for inverse problems. The so-constructed interpolants are used as inputs for a standard iterative inversion scheme. After providing theoretical results concerning the spectrum of the VSK collocation matrix, we test the method on astrophysical imaging benchmarks.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Perracchione_2021_Inverse_Problems_37_105001.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.