Saccades are rapid ballistic eye movements that humans make to direct the fovea to an object of interest. Their kinematics is well defined, showing regular relationships between amplitude, duration, and velocity: the saccadic ’main sequence’. Deviations of eye movements from the main sequence can be used as markers of specific neurological disorders. Despite its significance, there is no general methodological consensus for reliable and repeatable measurements of the main sequence. In this work, we propose a novel approach for standard indicators of oculomotor performance. The obtained measurements are characterized by high repeatability, allowing for fine assessments of inter- and intra-subject variability, and inter-ocular differences. The designed experimental procedure is natural and non-fatiguing, thus it is well suited for fragile or non-collaborative subjects like neurological patients and infants. The method has been released as a software toolbox for public use. This framework lays the foundation for a normative dataset of healthy oculomotor performance for the assessment of oculomotor dysfunctions.
The saccade main sequence revised: A fast and repeatable tool for oculomotor analysis
Gibaldi A.;Sabatini S. P.
2021-01-01
Abstract
Saccades are rapid ballistic eye movements that humans make to direct the fovea to an object of interest. Their kinematics is well defined, showing regular relationships between amplitude, duration, and velocity: the saccadic ’main sequence’. Deviations of eye movements from the main sequence can be used as markers of specific neurological disorders. Despite its significance, there is no general methodological consensus for reliable and repeatable measurements of the main sequence. In this work, we propose a novel approach for standard indicators of oculomotor performance. The obtained measurements are characterized by high repeatability, allowing for fine assessments of inter- and intra-subject variability, and inter-ocular differences. The designed experimental procedure is natural and non-fatiguing, thus it is well suited for fragile or non-collaborative subjects like neurological patients and infants. The method has been released as a software toolbox for public use. This framework lays the foundation for a normative dataset of healthy oculomotor performance for the assessment of oculomotor dysfunctions.File | Dimensione | Formato | |
---|---|---|---|
Main_Sequence_BRM (revised).pdf
accesso aperto
Descrizione: Articolo su rivista
Tipologia:
Documento in Pre-print
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.